Download presentation
Presentation is loading. Please wait.
Published byBrice Gregory Modified over 9 years ago
1
HEATING, VENTILATION AND AIR-CONDITIONING Prof. dr Maja Todorović University of Belgrade, Faculty of Mechanical Engineering
2
2 Subject description THE AIM Acquiring knowledge and skills in the field of heating and air-conditionig systems - the concept of indoor environmental parameters and thermal comfor, climate characteristics, heat trnasfer through building enevelope, types of cental heating systems, heating bodies and system equipment; methods of calculation energy needs and significant parameters; comfort conditions and design parameters, central air conditioning systems, energy sources, final and primary energy, domestic hot water systems; optimization of HVAC systems and the application of passive techniques. University of Belgrade, Faculty of Mechanical Engineering
3
3 Subject description OUTCOME Students are acquiring knowledge and skills in the field of heating, ventilation, air-conditionig systems and domestic hot water systems; Students are aquanted with methods of calculation of systems’ capacity and methods of calculations of annual energy demands which they can performe in practise. Students can link the basic knowledge and apply it on buildings energy calculations. University of Belgrade, Faculty of Mechanical Engineering
4
4 Subject description THEORETICAL LECTURES Тhe concept of indoor environmental parameters; thermal comfort; climate characteristics and inpact to indoor environment; metheorological parameters. Heat transfer through building envelope, transsmmision and ventilation heat losses. Central heating systems in buildings, types of heting fluids and heating bodies, central and local control of heating output, heat sources, final and primary energy, devices and equipment in central heating systems, methods of calculation of annual heating demand. Air-conditioning and ventilation systems, heat gains and cooling loads, Solar radiation impact, local and central air-conditioning systems, elements of air handling units. Systems for domestic hot water preparation, consumption dynamics, installed capacity, annual energy consumption of DHW systems. Cooling devices and cooling capacity, energy efficiency ratio, system losses, annual energy demand for cooling and ventilation. Systems optimization and passive techniques. University of Belgrade, Faculty of Mechanical Engineering
5
5 Subject description EXERCISES Auditory exercises consist of following parts: Example of calculation of thermal properties of elements of the building envelope - the determination of the coefficient of thermal conductivity, specific transmission and ventilation losses, calculation of installed capacity for heating and cooling, design conditions and schadules of use of technical systems, determination of annual energy needs. University of Belgrade, Faculty of Mechanical Engineering
6
6 The matrix – theoretical lectures University of Belgrade, Faculty of Mechanical Engineering Theoretical classes АТ-1 Introduction and thermal comfort 3 classes indoor environmental parameters; thermal comfort; climate characteristics and inpact to indoor environment; metheorological parameters; Air temperature, humidity, wind and Solar radiation; summer and winter design conditions. АТ-2 Heat transfer through building envelope 3 classes heat transmision through building elements; heat bridges; moisture transfer and condensation; air infiltration and natural ventilation. АТ-3 Central heating systems in buildings 3 classes types of central heating systems, heating fluids; types of heating bodies, mechanizms of heat transfer; piping systems, pumps and valves; central and local control of heatig output; heating fluid temperature influence to heating output and thermal comfort.
7
7 The matrix – theoretical lectures University of Belgrade, Faculty of Mechanical Engineering Theoretical classes АТ-4 Central heating systems’ equipment3 classes heat sources in central heating systems; biolers in heating systems; bioler room and its elements; expansion vessels; measurements and commissioning. АТ-5 Annual heating demands and heat consumption3 classes dominant parameters influences heating energy consumption; measurements to improve existing heating systems; final and primary energy; methods for calculating annual heat consumption; measurements of heat consumption in buildings. АТ-6 Cooling load and air-conditioning system dynamics3 classes heat gains and cooling load; transparent fasade elements; Sun radiation protection; shading coefficients and its influence to cooling load; internal heat gains.
8
8 The matrix – theoretical lectures University of Belgrade, Faculty of Mechanical Engineering Theoretical classes АТ-7Air-conditioning and ventilation systems3 classes comfort and industrial air-conditioning and ventilation; local devices for air treatment; central air-conditioning systems; air handling unit elements; central systems with fan-coils. АТ-8Systems for domestic hot water (DHW) preparation3 classes central systems for DHW preparation; design conditions and consumption dynamics; losses in DHW systems; solar systems for DHW preparation. АТ-9 Cooling devices and annual cooling demands3 classes cooling energy and cooling devices; energy efficiency ratio; losses in cooling systems; annual cooling demand; annual energy demand for mechanical ventilation. АТ-10Systems optimization and passive techniques3 classes waste haet recovery; heat exchangers; adiabatic and indirect adiabatic cooling; night ventilation technique; passive cooling, automatic control of the system.
9
9 The matrix – subject structure University of Belgrade, Faculty of Mechanical Engineering HEATING, VENTILATION AND AIR-CONDITIONING Week Lectures Classes weekly Lecture activities Other activities Tests TheoreticalExcersise 1AT-13EX-12 5 2АТ-23EX-22 5 3АТ-33EX-32 5 4АТ-43EX-42 5 5 0CO-13 T-125 6АТ-53EX-52 5 7АТ-63EX-62 5 8АТ-73EX-72 5 9 0CO-23 T-225 10АТ-83EX-82 5 11АТ-93EX-91 T-315 12АТ-103EX-102 5 13 CO-35 5 14 CO-455 15 FE55 Сума 3030 30 1575
10
10 Thank you for your attention Maja Todorović, University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Belgrade 35, Serbia mtodorovic@mas.bg.ac.rs University of Belgrade, Faculty of Mechanical Engineering
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.