Download presentation
Presentation is loading. Please wait.
Published byAsher Doyle Modified over 9 years ago
1
5.1 Fundamental Trig Identities sin ( ) = 1cos ( ) = 1tan ( ) = 1 csc ( )sec ( )cot ( ) csc ( ) = 1sec ( ) = 1cot ( ) = 1 sin ( )cos ( )tan ( ) tan ( ) = sin( )cot ( ) = cos( ) cos( ) sin ( ) sin 2 ( ) + cos 2 ( ) = 1 1 + tan 2 ( ) = sec 2 ( ) 1 + cot 2 ( ) = csc 2 ( ) Reciprocal Identities Quotient Identities Pythagorean IdentitiesEven-Odd (Negative Angle) Identities sin(-x) = -sin (x)csc(-x) = -csc(x) cos(-x) = cos (x)sec(-x) = sec(x) tan(-x) = -tan (x)cot(-x) = -cot(x)
2
5.1 Practice Problems 1.If tan (θ) = 2.6 then tan (-θ) = ________ 2.If cos (θ) = -.65 then cos (-θ) = _______ 3.If cos (θ) =.8 and sin (θ) =.6 then tan (- θ) = ________ 4.If sin (θ) = 2/3 then –sin(- θ) = ___________ 5.Find sin(θ), given cos(- θ) = √5/5 and tan θ < 0 (Hint: Use sin 2 θ + cos 2 θ = 1) 6.Find sin(θ), given sec θ = 11/4 and tan θ < 0 7.Find ALL trig functions given csc θ = -5/2 and θ in Quad III
3
Identity Matching Practice #1 (cos x)/(sin x) = ________A. sin 2 x + cos 2 x #2 tan x = _________B. cot x #3 cos (-x) = ___________C. sec 2 x #4 tan 2 x + 1 = ______D. (sin x)/(cos x) #5 1 = ________ E. cos x
4
More Identity Matching Practice #1 –tan x cos x = ________A. (sin 2 x) / (cos 2 x) #2 sec 2 x - 1 = _________B. 1 / (sec 2 x) #3 (sec x) / (csc x) = ___________C. sin (-x) #4 1 + sin 2 x = ______D. csc 2 x – cot 2 x + sin 2 x #5 cos 2 x = ________ E. tan x
5
More Practice: Simplify in terms of sine and cosine 1.Cot θ sin θ 2.Sec θ cot θ sin θ 3.(sec θ – 1)(sec θ + 1) 4.sin 2 θ (csc 2 θ – 1)
6
5.2 Verifying Identities Identity – An equation that is satisfied for all meaningful replacements of the variable Verifying Identities – Show/Prove one side of an equation actually equals the other. Example: Verify the identity: cot + 1 = csc (cos + sin ) = 1/sin (cos + sin ) = (1/sin ) cos + (1/sin ) sin = cos / sin + sin / sin = cot + 1 We will do other examples in class Techniques for Verifying Identities 1.Change to Sine and Cosine 2. Use Algebraic Skills – factoring 3. Use Pythagorean Identities 4. Work each side separately (Do NOT add to both sides, etc) 5. For 1 – sin x, try multiplying numerator & denominator by 1 + sin x to obtain 1 = sin 2 x
7
Verify the Following Identities 1.Cot θ / csc θ = cos θ 2.(1 – sin 2 β) / cos β = cos β 3.(Tan α)/(sec α) = sin α 4.(Tan 2 α + 1) / sec α = sec α 5.Cos 2 θ (tan 2 θ + 1) = 1 6.Sin 2 x + tan 2 x + cos 2 x = sec 2 x 7.Cos x /sec x + sin x/csc x = sec 2 x - tan 2 x
8
Verify more challenging Identities 1.Tan x + cos x / (1 + sin x) = sec x 2.Cos 4 x – sin 4 x = 1 – 2sin 2 x 3.(Sec x – tan x) 2 = (1 – sin x)/(1 + sin x) 4.(cos 2 x – sin 2 x) / (1 – tan 2 x) = cos 2 x 5.(Sec x + tan x)/ (sec x – tan x) = (1 + 2 sin x + sin 2 x)/cos 2 x 6.(sec x – csc x)/(sec x + csc x) = (tan x – 1)/(tan x + 1)
9
5.3 & 5.4 Sum and Difference Formulas cos ( + ) = cos cos - sin sin cos ( - ) = cos cos + sin sin sin ( + ) = sin cos + cos sin sin ( - ) = sin cos - cos sin tan ( + ) = tan + tan 1 - tan tan tan ( - ) = tan - tan 1 + tan tan Co-Function Identities sin ( ) = cos (90 - ) cos ( ) = sin (90 - ) tan ( ) = cot (90 - ) cot ( ) = tan (90 - ) sec ( ) = csc (90 - ) csc ( ) = sec (90 - )
10
5.3 & 5.4 Practice Problems Find the exact value of each expression: (a)Cos 15 ◦ (b)Cos (5π/12) (c)Cos 87 cos 93 – sin 87 sin 93 (d)Sin (75 ◦ ) (e)Sin 40 cos 160 – cos 40 sin 160 (f)Tan (7π/12) Use Co-function Identities to find θ (a)Cot θ = tan 25 ◦ (b)Sin θ = cos (-30 ◦ ) (c)Csc (3π/4) = sec θ
11
5.5 & 5.6 Double & Half Angle and Power Reducing Formulas Double-Angle sin 2 = 2 sin cos cos 2 = cos 2 - sin 2 = 2 cos 2 - 1 = 1 – 2 sin 2 tan 2 = 2 tan 1 – tan 2 Power Reducing Formulas sin 2 = 1 – cos 2 2 cos 2 = 1 + cos 2 2 tan 2 = 1 – cos 2 1 + cos 2 Half Angle sin = 1 – cos cos = 1 + cos 2 2 2 2 tan = 1 – cos = sin = +/- 2 sin 1 + cos 1-cosA 1+cosA
12
Product-to-Sum & Sum to Product Formulas sin sin = ½ [cos ( - ) – cos ( + )] cos cos = ½ [cos ( - ) + cos ( + )] sin cos = ½ [sin ( + ) + sin ( - )] cos sin = ½ [cos ( + ) – sin ( - )] Product to Sum sin + sin = 2 sin + cos - 2 2 sin - sin = 2 sin - cos + 2 2 cos + cos = 2 cos + cos - 2 2 cos - cos = -2 sin + sin - 2 2 Sum to Product
13
Double Angle Matching Practice #1 2cos 2 15 ◦ - 1 = ________A. 1/2 #2 2 tan 15 ◦ = _________B. √2 / 2 1 – tan 2 15 ◦ #3 2 sin 22.5 ◦ cos 22.5 ◦ = ___________C. √3 / 2 #4 cos 2 (π/6) - sin 2 (π/6) = ___________D. - √3 #5 2 sin (π/3) cos (π/3) = _____________E. √3 / 3 #6 2 tan (π/3) = __________________ 1– tan 2 (π/3)
14
More Double-Angle Practice 1.Find sin θ+ cos θ, given cos 2θ = ¾ with θ in quadrant III 2.Cos 2 15 ◦ – sin 2 15 ◦ 3.Verify the Identity: (sin x + cos x) 2 = sin 2x + 1 Product to Sum/Sum to Product Practice 1.Write 4 cos 75 ◦ sin 25 ◦ as the sum or difference of 2 functions 2.Write sin 2θ – sin 4θ as a product of 2 functions Half-Angle Practice 1.Find the exact value of cos 15 ◦
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.