Presentation is loading. Please wait.

Presentation is loading. Please wait.

Distributive Property: Advanced Problems It may be necessary to review the basic distributive property problems in the number property introduction PowerPoint.

Similar presentations


Presentation on theme: "Distributive Property: Advanced Problems It may be necessary to review the basic distributive property problems in the number property introduction PowerPoint."— Presentation transcript:

1 Distributive Property: Advanced Problems It may be necessary to review the basic distributive property problems in the number property introduction PowerPoint presentation

2 Recall the distributive property of multiplication over addition... symbolically: a × (b + c) = a × b + a × c and pictorially (rectangular array area model): a × ba × ca bc

3 An example: 6 x 13 using your mental math skills... symbolically: 6 × (10 + 3) = 6 × 10 + 6 × 3 and pictorially (rectangular array area model): 6 × 106 × 36 103

4 Example 1-1a Use the Distributive Property to write as an equivalent expression. Then evaluate the expression. Answer: 52 Multiply. Add.

5 Example 1-1b Use the Distributive Property to write as an equivalent expression. Then evaluate the expression. ***It doesn’t matter which side of the parenthesis the number is on. The property works the same. Answer: 30 Multiply. Add.

6 Example 1-1c Use the Distributive Property to write each expression as an equivalent expression. Then evaluate the expression. a. b. Answer:

7 Example 1-2a Real Life Example: Recreation North Country Rivers of York, Maine, offers one-day white-water rafting trips on the Kennebec River. The trip costs $69 per person, and wet suits are $15 each. Write two equivalent expressions to find the total cost of one trip for a family of four if each person uses a wet suit. Method 1 Find the cost for 1 person, then multiply by 4. cost for 1 person

8 Example 1-2a Method 2Find the cost of 4 trips and 4 wet suits. Then add. cost of 4 wet suits cost of 4 trips

9 Example 1-2b Evaluate either expression to find the total cost. Distributive Property Multiply. Add. Answer:The total cost is $336. CheckYou can check your results by evaluating 4($84).

10 Example 1-2c Movies The cost of a movie ticket is $7 and the cost of a box of popcorn is $2. a.Write two equivalent expressions to find the total cost for a family of five to go to the movies if each member of the family gets a box of popcorn. b.Find the total cost. Answer: $45 Answer:

11 Example 1-3a Use the Distributive Property to write as an equivalent algebraic expression. Simplify. Answer:

12 Example 1-3b Use the Distributive Property to write as an equivalent algebraic expression. Simplify. Answer:

13 Use the Distributive Property to write each expression as an equivalent algebraic expression. a. b. Example 1-3c Answer:

14 Example 1-4a Use the Distributive Property to write as an equivalent algebraic expression. Rewriteas Distributive Property Simplify. Definition of subtraction Answer:

15 Example 1-4b Use the Distributive Property to write as an equivalent algebraic expression. Distributive Property Simplify. Answer: Rewriteas

16 Use the Distributive Property to write each expression as an equivalent algebraic expression. a. b. Example 1-4c Answer:

17 Real-Life Example 2 Mental Math

18 The distributive property is mental math strategy that can be used when multiplying. 43 x 5 =?

19 Break apart the double-digit number. 43 x 5 =? 40 3 +

20 Then multiply each part by 5. 43 x 5 =? 40 3 x 5 x 5 +

21 Then multiply each part by 5. 43 x 5 =? 40 3 x 5 x 5 200 15 +

22 Finally, sum your two products 43 x 5 =215 40 3 x 5 x 5 200 15 += 215 +

23 Let’s look at another example. 53 x 6 = ?

24 Break apart the double-digit number. 53 x 6 = ?

25 Break apart the double-digit number. 53 x 6 = ? 50 3 +

26 Multiply each part by 6. 53 x 6 = ? 50 3 x 6 x 6 +

27 Multiply each part by 6. 53 x 6 = ? 50 3 x 6 x 6 300 18 +

28 Sum the two products. 53 x 6 = 318 50 3 x 6 x 6 300 + 18 = 318 +

29 The word “distribute” means “to give out.”

30 Distribute the cubes to the girls.

31

32

33

34

35

36 In this example, the 5 was distributed. 5 x 38 = 5 x (30 + 8) = (5 x 30) + (5 x 8)

37 In this example, the 7 was distributed. 7 x 46 = 7 x (40 + 6) = (7 x 40) + (7 x 6)

38 Find the area of the rectangle. Area = length x width 6 ft 24 ft

39 Find the area of the rectangle. Area = length x width 6 ft 24 ft

40 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft

41 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft

42 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft 6 ft

43 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft 6 ft Find the area of each rectangle.

44 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft 6 ft Find the area of each rectangle. 6 x 20 = 120 sq ft

45 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft 6 ft Find the area of each rectangle. 6 x 20 = 120 sq ft 6 x 4 = 24 sq ft

46 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft 6 ft Find the area of each rectangle. 120 sq ft 24 sq ft

47 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft 6 ft Now put the two rectangles back together. 120 sq ft 24 sq ft

48 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft Now put the two rectangles back together. 120 sq ft 24 sq ft

49 Find the area of the rectangle. Area = length x width 6 ft 20 ft+ 4 ft Now put the two rectangles back together. 120 sq ft 24 sq ft

50 Find the area of the rectangle. Area = length x width 6 ft 24 ft Now put the two rectangles back together. 120 sq ft + 24 sq ft

51 Find the area of the rectangle. Area = length x width 6 ft 24 ft Now put the two rectangles back together. 144 sq ft

52 A swimming pool has a shallow end and a deep end. Find the surface area of the pool. shallow water deepw ater 8 yds 5 yds 10 yds

53 shallow water deepw ater 8 yds 5 yds 10 yds 8 yds Break the pool into a deep end and a shallow end.

54 shallow water deepw ater 8 yds 5 yds 10 yds 8 yds Find the area of the deep end.

55 shallow water 8 x 5 = 40 8 yds 5 yds 10 yds 8 yds Find the area of the deep end.

56 shallow water 8 x 5 = 40 8 yds 5 yds 10 yds 8 yds Find the area of the shallow end.

57 8 x 10 = 80 8 x 5 = 40 8 yds 5 yds 10 yds 8 yds Find the area of the shallow end.

58 8 x 10 = 80 8 x 5 = 40 8 yds 5 yds 10 yds 8 yds Now sum the two areas together.

59 80 40 8 yds 5 yds 10 yds Now sum the two areas together. +

60 80 40 8 yds 5 yds 10 yds 40 + 80 = 120 square yards

61 Write an expression that shows how to find the area of the rectangle and uses the distributive property. 9 yds 5 yds 20 yds

62 Find the areas for each individual rectangle. 9 yds 5 yds 20 yds

63 Find the areas for each individual rectangle. 9 yds 5 yds 20 yds (9 x 5)

64 Find the areas for each individual rectangle. 9 yds 5 yds 20 yds (9 x 5)(9 x 20)

65 Sum the two areas. 9 yds 5 yds 20 yds (9 x 5)(9 x 20) +

66 (9 x 5) + (9 x 20) = area 9 yds 5 yds 20 yds (9 x 5)(9 x 20)

67 Practice Time

68 1) Which of the following expressions shows the distributive property for 5 x (3 + 7)? (5 x 3) + (5 x 7) (5 x 3) x (5 x 7) (5 + 3) x (5 + 7)

69 1) Which of the following expressions shows the distributive property for 5 x (3 + 7)? (5 x 3) + (5 x 7) Correct!

70 2) Which of the following expressions shows the distributive property for 3 x (9 + 4) ? (3 x 9) + (3 x 4) (3 + 9) + (3 + 4) (3 + 9) x (3 + 4)

71 2) Which of the following expressions shows the distributive property for 3 x (9 + 4) ? (3 x 9) + (3 x 4) Correct!

72 3) Which of the following expressions is equivalent to: 2 + 3 + 2 + 3 and shows the distributive property. 2 x (2 + 3) 2 + 2 + 3 + 3 3 x (2 + 3)

73 3) Which of the following expressions is equivalent to: 2 + 3 + 2 + 3 and uses the distributive property. 2 x (2 + 3) Correct!

74 4) Which of the following expressions is equivalent to: (4 x 3) + (4 x 8) ? 4 x (3 + 8) 8 x (3 + 4) 3 x (4 + 8)

75 4) Which of the following expressions is equivalent to: (4 x 3) + (4 x 8) ? 4 x (3 + 8) Correct!

76 5) Which of the following expressions is equivalent to: (5 x 9) + (5 x 3) ? 9 x (3 + 5) 5 x (9 + 3) 3 x (9 + 5)

77 5) Which of the following expressions is equivalent to: (5 x 9) + (5 x 3) ? 5 x (9 + 3)Correct!

78 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds

79 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds

80 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds

81 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds 4 yd s

82 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds 4 yd s 4 x 3

83 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds 4 yd s 4 x 34 x 9

84 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds 4 yd s 4 x 34 x 9

85 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds 4 x 34 x 9

86 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds 4 x 34 x 9

87 6) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 4 yds 3 yds 9 yds 4 x 3 +4 x 9

88 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds

89 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds

90 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds

91 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds 6 yds

92 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds 6 yds 6 x 4

93 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds 6 yds 6 x 46 x 8

94 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds 6 yds 6 x 46 x 8

95 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds 6 x 46 x 8

96 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds 6 x 46 x 8

97 7) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 6 yds 4 yds 8 yds 6 x 4 +6 x 8

98 8) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 5 yds 2 yds 10 yds

99 8) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 5 yds 2 yds 10 yds 5 x 25 x 10

100 8) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 5 yds 2 yds 10 yds 5 x 2 +5 x 10

101 9) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 8 yds 3 yds 5 yds

102 9) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 8 yds 3 yds 5 yds 8 x 38 x 5

103 9) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 8 yds 3 yds 5 yds 8 x 3 +8 x 5

104 10) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 5 yds x yds 10 yds

105 10) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 5 yds x yds 10 yds 5x5 ∙ 10

106 10) Write an expression that shows how to find the area of the rectangle and uses the distributive property. 5 yds x yds 10 yds 5x +5 ∙ 10

107 11) Which expression is equivalent to 3(x + 7)? 3x + 7 x + 21 x + 10 3x + 21

108 11) Which expression is equivalent to 3(x + 7)? 3x + 21 Correct!

109 12) Which expression is equivalent to 4(x + 5)? 4x + 5 4x + 20 x + 9 9x

110 12) Which expression is equivalent to 4(x + 5)? 4x + 20Correct!

111 13) Which expression is equivalent to 8(x + 2)? 8x + 16 8x + 2 10x 8x + 10

112 13) Which expression is equivalent to 8(x + 2)? 8x + 16Correct!

113 14) Which expression is equivalent to 2(x + 3)? 2x + 3 2x + 5 2x + 6 2x + 2

114 14) Which expression is equivalent to 2(x + 3)? 2x + 6 Correct!

115 Click below to see video http://www.youtube.com/watch?v=nVbRzh OIgm0http://www.youtube.com/watch?v=nVbRzh OIgm0 http://glencoe.mcgraw- hill.com/sites/007888523x/student_view0/c hapter4/lesson1/personal_tutor.htmlhttp://glencoe.mcgraw- hill.com/sites/007888523x/student_view0/c hapter4/lesson1/personal_tutor.html http://www.youtube.com/watch?v=itmz8i62 Ag4http://www.youtube.com/watch?v=itmz8i62 Ag4

116 Click to Test Your Skills http://glencoe.mcgraw- hill.com/sites/007888523x/student_view0/chapter4/lesso n1/self-check_quizzes.htmlhttp://glencoe.mcgraw- hill.com/sites/007888523x/student_view0/chapter4/lesso n1/self-check_quizzes.html http://www.algebrahelp.com/worksheets/view/simplifying/ distribution.quizhttp://www.algebrahelp.com/worksheets/view/simplifying/ distribution.quiz http://algebralab.org/studyaids/studyaid.aspx?file=Algebr a1_2-6.xmlhttp://algebralab.org/studyaids/studyaid.aspx?file=Algebr a1_2-6.xml http://www.algebra-class.com/distributive-property- practice.htmlhttp://www.algebra-class.com/distributive-property- practice.html http://www.algebralab.com/practice/practice.aspx?file=Al gebra1_2-6.xmlhttp://www.algebralab.com/practice/practice.aspx?file=Al gebra1_2-6.xml


Download ppt "Distributive Property: Advanced Problems It may be necessary to review the basic distributive property problems in the number property introduction PowerPoint."

Similar presentations


Ads by Google