Presentation is loading. Please wait.

Presentation is loading. Please wait.

Objectives Angle Pair Relationships Adjacent Angles Vertical Angles

Similar presentations


Presentation on theme: "Objectives Angle Pair Relationships Adjacent Angles Vertical Angles"— Presentation transcript:

1 Objectives Angle Pair Relationships Adjacent Angles Vertical Angles
Linear Pair Complementary Angles Supplementary Angles

2 Adjacent angles are “side by side” and share a common ray.
15º 45º

3 These are examples of adjacent angles.
45º 80º 35º 55º 130º 50º 85º 20º

4 These angles are NOT adjacent.
100º 50º 35º 35º 55º 45º

5 When 2 lines intersect, they make vertical angles.
75º 105º 105º 75º

6 Vertical angles are opposite one another.
75º 105º 105º 75º

7 Vertical angles are opposite one another.
75º 105º 105º 75º

8 Vertical angles are congruent
150º 30º 150º 30º

9 Supplementary angles add up to 180º.
40º 120º 60º 140º Adjacent and Supplementary Angles Supplementary Angles but not Adjacent

10 Complementary angles add up to 90º.
30º 40º 50º 60º Adjacent and Complementary Angles Complementary Angles but not Adjacent

11 Linear Pair Two adjacent angles (common vertex and a common ray) that form a straight line. So the two angles add up to ? 180

12 Practice Time!

13 Directions: Identify each pair of angles as vertical, supplementary, complementary, linear pair or none of the above.

14 #1 120º 60º Supplementary Angles And a Linear Pair

15 #2 60º 30º Complementary Angles

16 #3 Vertical Angles 75º 75º

17 #4 60º 40º None of the above

18 #5 60º 60º Vertical Angles

19 Supplementary Angles and a Linear Pair
#6 135º 45º Supplementary Angles and a Linear Pair

20 #7 25º 65º Complementary Angles

21 #8 90º 50º None of the above

22 Directions: Determine the missing angle.

23 #1 ? 45º

24 #1 135º 45º

25 #2 65º

26 #2 25º 65º

27 #3 35º

28 #3 35º 35º

29 #4 ? 50º

30 #4 130º 50º

31 #5 ? 140º

32 #5 140º 140º

33 #6 Rectangle ? 40º

34 #6 Rectangle 50º 40º

35 Find angle measures in a linear pair
EXAMPLE Find angle measures in a linear pair Two angles form a linear pair. The measure of one angle is 5 times the measure of the other. Find the measure of each angle. ALGEBRA SOLUTION Let x° be the measure of one angle. The measure of the other angle is 5x°. Then use the fact that the angles of a linear pair are supplementary to write an equation.

36 The measures of the angles are 30° and 5(30)° = 150°.
EXAMPLE Find angle measures in a linear pair x + 5x = 180° Write an equation. 6x = 180° Combine like terms. x = 30° Divide each side by 6. The measures of the angles are 30° and 5(30)° = 150°. ANSWER

37 Find m< AEB 4x +8 6x - 42

38 Write an equation & Solve

39 Find the measure of each <

40 Write an equation & Solve

41 Homework Page 38 # 3 – 42 (x3) and 49 – 52 all
Honors also: # 45, 55, & 56


Download ppt "Objectives Angle Pair Relationships Adjacent Angles Vertical Angles"

Similar presentations


Ads by Google