Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 6 Water Resources

Similar presentations


Presentation on theme: "Chapter 6 Water Resources"— Presentation transcript:

1 Chapter 6 Water Resources
Elemental Geosystems 5e Robert W. Christopherson Charles E. Thomsen

2

3 1995 Water Data

4

5 And while we can't say definitively that the current Chinese drought is a direct consequence of rising temperatures, the correlation between China's changing diet, rapid economic growth, and surging emissions of greenhouse gases is hard to miss. The faster China grows and the more high-protein pork and beef and chicken the Chinese eat, the worse it's going to get. Never mind the rest of the world -- how the drama plays out in China might be all we need to watch to see whether the globe as a whole can successfully confront the challenge of balancing economic growth with access to affordable food and water and energy while ensuring that climate disruptions don't completely upset the apple cart.

6

7

8 Lightning Figure 5.37

9

10

11

12

13

14

15 http://www.emc.ncep.noaa.gov/mmb/gcp/h2o/index.html last updates 2008

16 http://www.emc.ncep.noaa.gov/mmb/gcp/h2o/ last updates 2008

17 Hoover Dam, NV-AZ

18 Water Resources Hydrologic Cycle Soil-Water-Budget Concept
Groundwater Resources—water mining  Water Supply  

19 Hydrologic Cycle Model
Figure 6.1

20 Soil-Water-Budget Concept
The Soil-Water Balance Equation   Precipitation (PRECIP) input Actual evapotranspiration (ACTET) Determining POTET Deficit Surplus Soil-moisture storage Drought Three Examples of Water Balances Water Budget and Water Resources  

21 The Soil-Water Balance Equation
Figure 6.2

22 Surface Water   Figure 6.2

23 Precipitation in North America
Figure 6.4

24

25

26

27

28 The Colorado River Compact of basin divided into an upper and lower half, with each basin having the right to develop and use 7.5 million acre-feet (maf) of river water annually. The Boulder Canyon Project Act of apportioned lower basin's 7.5 maf among Arizona (2.8 maf), California (4.4 maf) and Nevada (0.3 maf) The Mexican Water Treaty of Committed 1.5 maf of the river's annual flow to Mexico. Minute 242 of the U.S.-Mexico International Boundary and Water Commission of Required U.S. to take actions to reduce the salinity of water being delivered to Mexico. The Colorado River Basin Salinity Control Act of Authorized desalting and salinity control projects, including the Yuma Desalting Plant, to improve Colorado River quality. (Only operated 9 months in early 1990’s)

29

30

31 Tigris and Euphrates Before Turkey began building large dams on the Euphrates, average annual flow at Turkish-Syrian border about 30 x 109 m³. A further 1.8 x 109 m³ added in Syria from Khabour River. On several occasions in recent years, low water levels in Lake Assad reservoir, behind Tabqa dam, restricted the hydro-power output (with installed capacity of 800 MW) and irrigation development. Before 1970 when Turkey and Syria built a series of large dams on the Euphrates River, Iraq used to receive 33 x 109 m³ of river water per year at Hit, 200 km downstream from the Syrian border. By the end of the 1980s, the discharge decreased to as little as 8 x 109 m³ per year at Hit. By 1989, 80% of the natural run-off of the Euphrates River had been developed by adding a third (largest) dam, the Ataturk.

32

33 Ground water mining

34 Day 2 Fog: Incoming air mass? Characteristics of region coming into?

35 Advection Fog (wind brings moist air over cool surface)
Figure 5.20

36 Evaporation Fog (cold wind blows over warm water)
Figure 5.21

37 Valley Fog (cooler dense air settles)
Figure 5.25 Figure 5.22

38 Radiation Fog (night cooling)
Look also at snow Figure 5.23

39 1960’s: -394 m, 950 km² 2012: m, 637 km²

40

41 The proposed conveyance would pump seawater 230 m uphill from the Red Sea's Gulf of Aqaba through the Arabah (Arava) valley in Jordan, then flow down by gravity through multiple pipelines to the Dead Sea, followed by a drop through a penstock to the level of the Dead Sea near its shore and an open Canal to the Sea itself, which lies about 420 m below sea level. The project will consist of about 225 km of seawater and brine conveyance pipelines parallel to the Arabah valley in Jordan. It would also consist of about 178 km of freshwater conveyance pipelines to Amman. It includes water desalination plants and a hydropower plants. Ultimate phase it would provide 850 million cubic m of freshwater per year. It would require electric generating capacity from the Jordanian grid and would provide electricity through hydropower, making the project a large net energy user. The net energy demand would have to be satisfied through power projects whose costs is not included in the project costs. Jordan plans to build a nuclear reactor which may supply these power needs. Project cost estimates vary from $2B to >$10B. The first phase of the Jordan Red Sea Project is expected to cost US$2.5 billion.

42 Potential Evapotranspiration
Figure 6.6

43 Types of Soil Moisture Figure 6.7

44 Soil-moisture Availability
Figure 6.8

45 Sample Water Budget Figure 6.10

46 Sample Water Budgets Figure 6.11

47 Annual River Runoff Figure 6.12

48 Hurricane Camille and Water Budgets
Figure FS 6.1.2

49 Groundwater Resources
Groundwater Profile and Movement   Groundwater Utilization  Pollution of Groundwater Resource

50 Groundwater Potential
Figure 6.13

51 Groundwater Characteristics
Figure 6.14

52 Groundwater Characteristics
Figure 6.14

53 Groundwater and Streamflow
Figure 6.16

54 High Plains Aquifer Figure FS 6.2.1

55 U.S. Water Budget Figure 6.17

56 Water Withdrawal by Sector
Figure 6.18

57 Global Water Scarcity Figure 6.20

58 Elemental Geosystems 5e
End of Chapter 6 Elemental Geosystems 5e Robert W. Christopherson Charles E. Thomsen

59 Lysimeter Figure 6.5

60 Our Water Supply Water Supply in the United States
Instream, Nonconsumptive, and Consumptive Uses   Desalination Future Considerations

61


Download ppt "Chapter 6 Water Resources"

Similar presentations


Ads by Google