Presentation is loading. Please wait.

Presentation is loading. Please wait.

3.0 Fourier Series Representation of Periodic Signals

Similar presentations


Presentation on theme: "3.0 Fourier Series Representation of Periodic Signals"โ€” Presentation transcript:

1 3.0 Fourier Series Representation of Periodic Signals
3.1 Exponential/Sinusoidal Signals as Building Blocks for Many Signals

2 Time/Frequency Domain Basis Sets
Time Domain ๐‘› ๐‘ฅ[๐‘›] ๐‘ฅ(๐‘ก) ๐‘ก {๐›ฟ ๐‘กโˆ’๐œ , โˆ’โˆž<๐œ<โˆž} {๐›ฟ ๐‘›โˆ’๐‘˜ , ๐‘˜=0,ยฑ1,ยฑ2, โ‹ฏ} Frequency Domain { ๐‘’ ๐‘—๐œ”๐‘ก , โˆ’โˆž<๐œ”<โˆž} { ๐‘’ ๐‘—๐œ”๐‘› ,๐œ”โˆˆ 0, 2๐œ‹ } ๐ด = ๐‘˜ ๐‘Ž ๐‘˜ ๐‘ฃ ๐‘˜ (ๅˆๆˆ) ๐‘Ž ๐‘— = ๐ด โ‹… ๐‘ฃ ๐‘— ๅˆ†ๆž ๐‘ก, ๐‘›

3 Signal Analysis (P.32 of 1.0) ๐‘…๐‘’{ }= cos ๐œ” ๐‘˜ ๐‘ก

4 Response of A Linear Time-invariant System to An Exponential Signal
Initial Observation time-invariant scaling property 0 t if the input has a single frequency component, the output will be exactly the same single frequency component, except scaled by a constant

5 Input/Output Relationship
๐‘ฆ(๐‘ก) ๐‘ฅ(๐‘ก) Time Domain ๐›ฟ(๐‘ก) โ„Ž(๐‘ก) ๐‘ก Frequency Domain ๐œ” ๐œ” ๐œ” 1 ๐œ” 3 ๐œ” 5 ๐œ” 1 ๐œ” 3 ๐œ” 5

6 Response of A Linear Time-invariant System to An Exponential Signal
More Complete Analysis continuous-time matrix vectors ๐ด ๐‘ฅ=๐‘ฆ ๐ด ๐œˆ=๐œ†๐œˆ eigen value eigen vector

7 Response of A Linear Time-invariant System to An Exponential Signal
More Complete Analysis continuous-time Transfer Function Frequency Response : eigenfunction of any linear time-invariant system : eigenvalue associated with the eigenfunction est

8 Response of A Linear Time-invariant System to An Exponential Signal
More Complete Analysis discrete-time Transfer Function Frequency Response eigenfunction, eigenvalue

9 System Characterization
Superposition Property continuous-time discrete-time each frequency component never split to other frequency components, no convolution involved desirable to decompose signals in terms of such eigenfunctions

10 3.2 Fourier Series Representation of Continuous-time Periodic Signals
Harmonically related complex exponentials T: fundamental period all with period T

11 Harmonically Related Exponentials for Periodic Signals
๐‘‰= ๐‘ฅ(๐‘ก) ๐‘ฅ(๐‘ก) perodic fundamental period [๐‘›] =๐‘‡(๐‘) T (๐‘) ๐‘ก, ๐‘› ๐‘Ž 4 ๐‘ก, ๐‘› ๐œ” 0 = 2๐œ‹ ๐‘‡ ๐‘Ž 1 ๐‘Ž 3 ๐‘Ž 5 (๐‘) ๐‘Ž 0 ๐‘˜=1 ๐‘˜ ๐‘ก, ๐‘› ๐œ” ๐‘˜=2 ๐œ” 0 3๐œ” 0 5๐œ” 0 ๐‘ก, ๐‘› 2๐œ” 0 4๐œ” 0 ๐‘˜=3 All with period T: integer multiples of ฯ‰0 Discrete in frequency domain (๐‘)

12 Fourier Series Representation
: j-th harmonic components real

13 Real Signals For orthogonal basis: (unique representation)
๐‘˜ ๐‘Ž ๐‘˜ ๐‘ฃ ๐‘˜ = ๐‘˜ ๐‘ ๐‘˜ ๐‘ฃ ๐‘˜ ๐‘˜ ( ๐‘Ž ๐‘˜ โˆ’ ๐‘ ๐‘˜ ) ๐‘ฃ ๐‘˜ =0โ‡’ ๐‘Ž ๐‘˜ = ๐‘ ๐‘˜ (unique representation)

14 Fourier Series Representation
Determination of ak Fourier series coefficients dc component

15 ๐ด โ‹… ๐‘ฃ ๐‘› =( ๐‘˜ ๐‘Ž ๐‘˜ ๐‘ฃ ๐‘˜ )โ‹… ๐‘ฃ ๐‘› ๐‘ฃ ๐‘˜ โ‹… ๐‘ฃ ๐‘› = ๐‘‡, ๐‘˜=๐‘› 0,๐‘˜โ‰ ๐‘› Not unit vector
๐ด โ‹… ๐‘ฃ ๐‘› =( ๐‘˜ ๐‘Ž ๐‘˜ ๐‘ฃ ๐‘˜ )โ‹… ๐‘ฃ ๐‘› ๐‘ฃ ๐‘˜ โ‹… ๐‘ฃ ๐‘› = ๐‘‡, ๐‘˜=๐‘› 0,๐‘˜โ‰ ๐‘› Not unit vector orthogonal ๐ด โ‹… ๐‘ฃ ๐‘› =๐‘‡ ๐‘Ž ๐‘› ๐‘Ž ๐‘› = 1 ๐‘‡ ( ๐ด โ‹… ๐‘ฃ ๐‘› ) (ๅˆ†ๆž)

16 Fourier Series Representation
Vector Space Interpretation vector space could be a vector space some special signals (not concerned here) may need to be excluded

17 Fourier Series Representation
Vector Space Interpretation orthonormal basis is a set of orthonormal basis expanding a vector space of periodic signals with period T

18 Fourier Series Representation
Vector Space Interpretation Fourier Series

19 Fourier Series Representation
Completeness Issue Question: Can all signals with period T be represented this way? Almost all signals concerned here can, with exceptions very often not important

20 Fourier Series Representation
Convergence Issue consider a finite series It can be shown ak obtained above is exactly the value needed even for a finite series

21 Truncated Dimensions ๐‘Ž 1 โ€ฒ = ๐‘Ž 1 , ๐‘Ž 2 โ€ฒ = ๐‘Ž 2 ,
๐‘Ž 1 โ€ฒ = ๐‘Ž 1 , ๐‘Ž 2 โ€ฒ = ๐‘Ž 2 , for orthogonal ๐‘– , ๐‘— , ๐‘˜ All truncated dimensions are orthogonal to the subspace of dimensions kept.

22 Fourier Series Representation
Convergence Issue It can be shown

23 Fourier Series Representation
Gibbs Phenomenon the partial sum in the vicinity of the discontinuity exhibit ripples whose amplitude does not seem to decrease with increasing N See Fig. 3.9, p.201 of text

24

25 Fourier Series Representation
Convergence Issue x(t) has no discontinuities Fourier series converges to x(t) at every t x(t) has finite number of discontinuities in each period Fourier series converges to x(t) at every t except at the discontinuity points, at which the series converges to the average value for both sides All basis signals are continuous, so converge to average values

26 Fourier Series Representation
Convergence Issue Dirichletโ€™s condition for Fourier series expansion (1) absolutely integrable, ๏‚ฅ (2) finite number of maxima & minima in a period (3) finite number of discontinuities in a period

27 3.3 Properties of Fourier Series
Linearity ๐‘ฅ =( ๐‘Ž 1 , ๐‘Ž 2 , ๐‘Ž 3 ,โ‹ฏ) ๐‘ฆ =( ๐‘ 1 , ๐‘ 2 , ๐‘ 3 ,โ‹ฏ) ๐ด ๐‘ฅ +๐ต ๐‘ฆ =(๐ด ๐‘Ž 1 +๐ต ๐‘ 1 ,๐ด ๐‘Ž 2 +๐ต ๐‘ 2 ,โ‹ฏ)

28 Time Shift phase shift linear in frequency with amplitude unchanged
๐‘Ž ๐‘˜ ๐‘’ ๐‘—๐‘˜ ๐œ” 0 (๐‘กโˆ’ ๐‘ก 0 ) = ๐‘’ โˆ’๐‘—๐‘˜ ๐œ” 0 ๐‘ก 0 ๐‘Ž ๐‘˜ ๐‘’ ๐‘—๐‘˜ ๐œ” 0 ๐‘ก ๐‘ก 0 ๐‘ฅ(๐‘กโˆ’๐‘ก 0 ) ๐‘ฅ(๐‘ก) ๐œ” 0 2๐œ” 0 3๐œ” 0 ๐‘˜๐œ” 0 ๐‘ก 0 ๐œ‹ 2๐œ‹ 3๐œ‹

29 unique representation for orthogonal basis
Time Reversal the effect of sign change for x(t) and ak are identical unique representation for orthogonal basis

30 Time Scaling positive real number
periodic with period T/ฮฑ and fundamental frequency ฮฑฯ‰0 ak unchanged, but x(ฮฑt) and each harmonic component are different

31 Multiplication (โ‹ฏ, ๐‘Ž 0 ๐‘ 3 + ๐‘Ž 1 ๐‘ 2 + ๐‘Ž 2 ๐‘ 1 + ๐‘Ž 3 ๐‘ 0 ,โ‹ฏ) ๐‘’ ๐‘—3 ๐œ” 0 ๐‘ก ๐‘‘ 3 = ๐‘— ๐‘Ž ๐‘— ๐‘ 3โˆ’๐‘—

32 Conjugation unique representation

33 Differentiation

34 Parsevalโ€™s Relation ๐ด 2 = ๐‘˜ ๐‘Ž ๐‘˜ 2 but ๐‘ฃ ๐‘– โ‹… ๐‘ฃ ๐‘— =๐‘‡ ๐›ฟ ๐‘–๐‘—
๐ด 2 = ๐‘˜ ๐‘Ž ๐‘˜ 2 but ๐‘ฃ ๐‘– โ‹… ๐‘ฃ ๐‘— =๐‘‡ ๐›ฟ ๐‘–๐‘— total average power in a period T average power in the k-th harmonic component in a period T

35 3.4 Fourier Series Representation of Discrete-time Periodic Signals
Harmonically related signal sets all with period only N distinct signals in the set

36 Harmonically Related Exponentials for Periodic Signals
(P. 11 of 3.0) ๐‘‰= ๐‘ฅ(๐‘ก) ๐‘ฅ(๐‘ก) perodic fundamental period [๐‘›] =๐‘‡(๐‘) T (๐‘) ๐‘ก, ๐‘› ๐‘Ž 4 ๐‘ก, ๐‘› ๐œ” 0 = 2๐œ‹ ๐‘‡ ๐‘Ž 1 ๐‘Ž 3 ๐‘Ž 5 (๐‘) ๐‘Ž 0 ๐‘˜=1 ๐‘˜ ๐‘ก, ๐‘› ๐œ” ๐‘˜=2 ๐œ” 0 3๐œ” 0 5๐œ” 0 ๐‘ก, ๐‘› 2๐œ” 0 4๐œ” 0 ๐‘˜=3 All with period T: integer multiples of ฯ‰0 Discrete in frequency domain (๐‘)

37 Continuous/Discrete Sinusoidals
(P.36 of 1.0)

38 Exponential/Sinusoidal Signals
Harmonically related discrete-time signal sets all with common period N This is different from continuous case. Only N distinct signals in this set. (P.42 of 1.0)

39 Fourier Series Representation
Determination of ak (P.14 of 3.0) Fourier series coefficients dc component

40 ๐ด โ‹… ๐‘ฃ ๐‘› =( ๐‘˜ ๐‘Ž ๐‘˜ ๐‘ฃ ๐‘˜ )โ‹… ๐‘ฃ ๐‘› ๐‘ฃ ๐‘˜ โ‹… ๐‘ฃ ๐‘› = ๐‘‡, ๐‘˜=๐‘› 0,๐‘˜โ‰ ๐‘› Not unit vector
(P.15 of 3.0) ๐ด โ‹… ๐‘ฃ ๐‘› =( ๐‘˜ ๐‘Ž ๐‘˜ ๐‘ฃ ๐‘˜ )โ‹… ๐‘ฃ ๐‘› ๐‘ฃ ๐‘˜ โ‹… ๐‘ฃ ๐‘› = ๐‘‡, ๐‘˜=๐‘› 0,๐‘˜โ‰ ๐‘› Not unit vector orthogonal ๐ด โ‹… ๐‘ฃ ๐‘› =๐‘‡ ๐‘Ž ๐‘› ๐‘Ž ๐‘› = 1 ๐‘‡ ( ๐ด โ‹… ๐‘ฃ ๐‘› ) (ๅˆ†ๆž)

41 Fourier Series Representation
repeat with period N Note: both x[n] and ak are discrete, and periodic with period N, therefore summed over a period of N ๐ด = ๐‘˜ ๐‘Ž ๐‘˜ ๐‘ฃ ๐‘˜ (ๅˆๆˆ) ๐‘Ž ๐‘˜ = ๐ด โ‹… ๐‘ฃ ๐‘˜ (ๅˆ†ๆž) N different values in ๐‘ฅ[๐‘›] N-dimensional vector space

42 Orthogonal Basis

43 Fourier Series Representation
Vector Space Interpretation is a vector space

44 Fourier Series Representation
Vector Space Interpretation a set of orthonormal bases

45 Fourier Series Representation
No Convergence Issue, No Gibbs Phenomenon, No Discontinuity x[n] has only N parameters, represented by N coefficients sum of N terms gives the exact value N odd โ€“ N even See Fig. 3.18, P.220 of text

46

47 Properties Primarily Parallel with those for continuous-time
Multiplication periodic convolution ๐‘Ž ๐‘— ๐‘ ๐‘˜โˆ’๐‘— ๐‘—

48 Time Shift First Difference ๐‘ฅ ๐‘กโˆ’ ๐‘ก 0 โŸท ๐‘’ โˆ’๐‘—๐‘˜ ๐œ” 0 ๐‘ก 0 ๐‘Ž ๐‘˜
๐‘ฅ ๐‘กโˆ’ ๐‘ก 0 โŸท ๐‘’ โˆ’๐‘—๐‘˜ ๐œ” 0 ๐‘ก ๐‘Ž ๐‘˜ ๐‘ฅ ๐‘›โˆ’ ๐‘› 0 โŸท ๐‘’ โˆ’๐‘—๐‘˜ ๐œ” 0 ๐‘› ๐‘Ž ๐‘˜ ๐‘ฅ ๐‘›โˆ’1 โŸท ๐‘’ โˆ’๐‘—๐‘˜( 2๐œ‹ ๐‘ ) ๐‘Ž ๐‘˜ First Difference

49 Properties Parsevalโ€™s Relation average power in a period
average power in a period for each harmonic component

50 System Characterization
3.5 Application Example System Characterization y[n], y(t) h[n], h(t) x[n], x(t) ฮด[n], ฮด(t) zn , e st H(z)zn, H(s)est, z=e jฯ‰, s=j๏ท e jฯ‰n , e jฯ‰t H(e jฯ‰)e jฯ‰n, H(j๏ท)e jฯ‰t ๏ท n ๏ท n

51 Superposition Property
Continuous-time Discrete-time H(j๏ท), H(ejฯ‰) frequency response, or transfer function

52 Filtering modifying the amplitude/ phase of the different frequency components in a signal, including eliminating some frequency components entirely frequency shaping, frequency selective Example 1 See Fig. 3.34, P.246 of text

53

54 Filtering Example 2 See Fig. 3.36, P.248 of text

55

56 Examples Example 3.5, p.193 of text

57 Examples Example 3.5, p.193 of text

58 Examples Example 3.5, p.193 of text (a) (b) (c)

59 Examples Example 3.8, p.208 of text (a) (b) (c)

60 Examples Example 3.8, p.208 of text

61 Examples Example 3.17, p.230 of text y[n], y(t) h[n], h(t) x[n], x(t)
ฮด[n], ฮด(t) x[n] y[n] h[n]

62 Problem 3.66, p.275 of text .

63 Problem 3.70, p.281 of text 2-dimensional signals

64 Problem 3.70, p.281 of text 2-dimensional signals

65 Problem 3.70, p.281 of text 2-dimensional signals


Download ppt "3.0 Fourier Series Representation of Periodic Signals"

Similar presentations


Ads by Google