Download presentation
Published byWalter Rafe Jefferson Modified over 9 years ago
1
5-3 Concurrent Lines, Medians, Altitudes When two lines intersect at one point, we say that the lines are intersecting. The point at which they intersect is the point of intersection. (nothing new right?) Well, if three or more lines intersect, we say that the lines Are concurrent. The point at which these lines intersect Is called the point of concurrency.
2
The perpendicular bisectors of the sides of a triangle are
Theorem 5-6 The perpendicular bisectors of the sides of a triangle are Concurrent at a point equidistant from the vertices. Point of concurrency
3
This point of concurrency has a special name.
It is known as the circumcenter of a triangle. The circumcenter of a triangle is one of many different “centers” of a triangle. Circumcenter
4
The circumcenter is equidistant from all three
Vertices.
5
The circumcenter gets its name from the fact
that it is the center of the circle that circumscribes the triangle. Circumscribe means to be drawn around by touching as many points as possible.
6
So, to find the center of a circle that will
circumscribe any given triangle, you need to find the point of concurrency of the three perpendicular bisectors of the triangle. Sometimes this will be inside the triangle, sometimes it will be on the triangle, and sometimes it will be outside of the triangle! Acute Right Obtuse
7
Theorem 5-7 The bisectors of the angles of a triangle are Concurrent at a point equidistant from the sides. Angle bisector
8
The point of concurrency of the three angle
bisectors is another center of a triangle known as the Incenter. It is equidistant from the sides of the triangle, and gets its name from the fact that it is the center of the circle that is inscribed within the circle.
9
Median: A median of a triangle is the segment
That connects a vertex to the midpoint of the Opposite side.
10
Theorem 5-8 The medians of a triangle are concurrent at a point that is two thirds the distance from each vertex to the midpoint of the opposite side.
11
Theorem 5-8 So, if you know the length of any median, you know where the three medians are concurrent. It would be At the point that is 2/3 the length of the median from the vertex it originated from.
12
For Example: If you know a median of a triangle Is 12cm, you could determine the point of concurrency Of all three medians (2/3 of 12) or 8cm from the vertex. 8
13
This point of concurrency of the
Medians is another center Of a triangle. It is known as the Centroid
14
This Centroid Is also the center of Gravity Of a triangle which means it is the Point where a triangular shape will Balance.
15
Altitudes : Altitudes of a triangle are the perpendicular segments from the vertices to the line containing the opposite side. Unlike medians, and angle bisectors that are always inside a triangle, altitudes can be inside, on or outside the triangle.
16
This point of concurrency of the altitudes
Of a triangle form another center of triangles. This center is known as the Orthocenter.
17
Theorem 5-9 The lines that contain the altitudes of a triangle are Concurrent.
18
In Conclusion: There are many centers of
Triangles. We have only looked at 4: Circumcenter: Where the perpendicular bisectors meet Incenter: Where the angle bisectors meet Centroid: Where the medians meet Orthocenter: Where the altitudes meet.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.