Download presentation
Presentation is loading. Please wait.
Published byAshlyn White Modified over 9 years ago
1
The Life Cycle of Giant Molecular Clouds Charlotte Christensen
2
Observational Constraints on The Life Cycle of Giant Molecular Clouds in Milky Way-like Galaxies Charlotte Christensen
3
Coming up Physical Background Lifecycle Formation Core Formation Protostar Formation Star Formation Dispersal Nagging Questions
4
Meet the Molecules
5
HII
6
HI
7
H2H2H2H2
8
12 CO
9
Meet the Molecules 13 CO
10
Meet the Molecules NH 3
11
3 Phase Interstellar Media Hot Ionized Medium Warm Neutral/Ionized Medium Cold Neutral Medium
12
3 Phase Interstellar Media Hot Ionized Medium HII T 10 6 - 10 7 K 10 -4 - 10 -2 cm -3 Warm Neutral/Ionized Medium Cold Neutral Medium Haffner et al, 2003
13
3 Phase Interstellar Media Hot Ionized Media Warm Neutral/Ionized Media HII & HI T 6000 -- 12,000K 0.01 cm -3 Cold Neutral Media MW 21cm radiation Dickey & Lockman, 1990
14
3 Phase Interstellar Media Hot Ionized Media Warm Neutral/Ionized Media Cold Neutral Media HI & H 2 T 15 -- 100K 100 -- 5000 cm -3 Dame et al, 2001 MW CO emission
15
Molecular Hydrogen Clouds Self-gravitating (rather than diffuse) H 2, molecules, and dust grains 30 - 60% of the gas mass Occupy > 1% of the volume Site of star formation Eagle Nebula HST
16
Size Scales Mass (M O )Size (pc) (cm -3 ) Superclouds / GMAs 10 7 -- Giant Molecular Clouds 10 4 -- 10 6 50100 Molecular Clouds10 3 -- 10 4 10100 Bok Globules1 -- 1000110 4 Cores1 -- 1000110 4
17
Size Scales Mass (M O )Size (pc) (cm -3 ) Superclouds / GMAs 10 7 -- Giant Molecular Clouds 10 4 -- 10 6 50100 Molecular Clouds10 3 -- 10 4 10100 Bok Globules1 -- 1000110 4 Cores1 -- 1000110 4
18
Some Timescales Crossing Time Time for a sound wave to propagate through c = 10 Myr Dynamical Time Time for a particle to free fall to center dyn = G -1/2 2 Myr “Dynamic” vs “Quasi-Static” Evolution
19
Support Assume Equilibrium Virial Theorem 2 T + W = 0 Kinetic Energy Potential Energy Jeans Mass:
20
Support Assume Equilibrium Outside Pressure 2(T - T 0 ) + W = 0 Potential Energy KE from External Pressure Kinetic Energy
21
Support Assume Equilibrium Turbulence vs Thermal KE 2(T + T P - T 0 ) + W = 0 Potential Energy KE from External Pressure Thermal KE Turbulent KE
22
Support Assume Equilibrium Magnetic Field 2(T + T P - T 0 ) + W + B = 0 Potential Energy KE from External Pressure Thermal KE Turbulent KE Mag. Enegry
23
Support Assume Equilibrium Magnetic Field 2(T + T P - T 0 ) + W + B = 0 Potential Energy KE from External Pressure Thermal KE Turbulent KE Mag. Enegry
24
Turbulent Support -- Source Internal Stellar Winds Bipolar Outflows HII External Density Waves Differential Rotation Supernovae Winds from Massive Stars
25
Turbulent Support -- Decay Close to a Kolmogrov Spectrum Cascade down to lower energies Large eddies form small eddies Small eddies dissipated through friction Timescale: 1 Myr
26
Magnetic Field Support -- Source Galactic Dynamo Seed Magnetic Field Differential Rotation Convection Throughout MW Seen in polarization and Zeeman splitting MPIfR Bonn NGC 6946
27
Magnetic Field Support -- Decay Ambipolar Diffusion -- Decoupling of charged and neutral particles Timescale: 10 Myr Depends on: Density Magnetic Flux Ionization Fraction
28
Life Cycle Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal
29
Life Cycle Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal
30
Theories Collisional build up of molecular clouds Growth time collisional time Quiescent growth of ambient H 2 Gravitational/magnetic instability Shock compression Spiral Arms Supernovae From HI of H 2 ?
31
w/ CO all HI Correlation with HI Filaments of HI around all GMCs Engargiola et al, 2003 M33 Density
32
Correlation with Spiral Arms M33 60% of H 2 in spiral arms Grand design spirals: > 90% (Nieten et al. 2006, Garcia-Burillo et al 1993) Rosolowsky et al, 2007
33
Age Limits = 10-20 Myr Collisional build up of molecular clouds = 2000 Myr Quiescent growth of ambient H 2 H2 = 0.3 M O pc 2 = 100 Myr Engargiola et al, 2003 M33
34
Shocks Observation of a shocked GMA Tosaki, 2007 12 C 13 C M31
35
GMC Formation -- Conclusions Formed primarily from either HI or H 2 Compressed to self- gravitating clouds in spiral arms
36
Life Cycle Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal
37
Cloud Core Formation GMC is supported by: Magnetic flux Turbulence Support is removed either Slowly by Ambipolar diffusion Fast by decay of turbulence and turbulence amplified diffusion Cores (regions 2-4 times ambient density) form at 10% efficiency Lagoon Nebula
38
Initial Conditions Cloud envelope is In non-equilibrium Magnetically subcritical (Cortes et al, 2005) Very inhomogenous Carina, HST
39
Observations of Cores Myers & Fuller, 1991
40
Observations of Cores Cores are: Non-isotropic More prolate than oblate Not necessarily aligned with the magnetic field (Glenn 1999) Prolate Oblate
41
Ratio of Clouds without Stars One last test of timescale: N NS /N T = NS / T Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal
42
Ratio of Clouds without Stars Very few MW GMCs without SF 25% of GMCs in other galaxies have no associate HII regions (Blitz, 2006) Engargiola, et al 2003 M33 -- Distance between GMC and HII
43
Ratio of Clouds without Stars N NS /N T = NS / T 1/4 Dynamic Collapse Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal
44
Life Cycle Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal
45
Core Collapse to Protostar Overdensties collapse Collapse regulated by Turbulence Magnetic Field Fragmentation Protostar formation when core becomes opaque
46
Core Sizes &Densities Radius (pc) Lee et al, 1999 Enoch et al, 2008 Log Density
47
Protostar Formation Size
48
Magnetic Support Cores are (probably) supercritical, i.e. not supported by the magnetic field M/ B = c G -1/2 c 0.12 Crutcher, 1999 Critical
49
Turbulence Cores are turbulent Motions are Supersonic Turbulence from shocks or MHD waves Myers & Khersonsky, 1994
50
MHD Turbulence Dependent on Ionization Decays by *** Decay rate is still comparable to non- magnetic turbulence Speeds close to Alfven speed
51
Time Scales We have flow of material onto magnetically- unsupported cores Larger, more massive cores collapse to protostars How fast does this happen?
52
Time Scales -- Spiral Arm Offset
53
Tosaki, 2002 M51 13 CO 12 CO HH
54
Time Scales -- Spiral Arm Offset Difference between peaks 10 Myr Long delay of SF OR staggered SF Tosaki, 2002
55
Time Scales -- Statistcs Ratio of clouds without protostars: N NSC /N C = NSC / C Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal
56
Time Scales -- Statistics Optically Selected MW Cores: N NSC /N C = 306/400 (Lee & Myers, 1999) Perseus, Serpens, & Ophiuchus: N NSC /N C = 108/200 (Enoch et al, 2008) 25% - 50% of core life before SF (Enoch et al, 2008)
57
Time Scales -- Statistics Lifetime of a protostar 2 - 5 x 10 5 Myr Lifetime of a core 0.3 - 1 x 10 6 Myr Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal 0.5 Myr
58
Life Cycle Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal
59
Stars Form Powered by gravitational energy Envelopes of accreting material T Tauri Stars Trifid, HST
60
Size Hatchel & Fullerl, 2008 Younger Protostar Older Protostar Starless Perseus Cores
61
Time Scale T Tauri Problem Most stars form within 3 Myr Palla & Stahler, 2000
62
Location Huff & Stahler, 2006
63
Time Scale Star formation lasts 2 - 4 Myr Clouds gone after 5 - 10 Myr Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal 2 - 4 Myr
64
Lifecycle Cloud Formation Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal
65
Clouds Dispersing Leisawitz, 1989
66
Proximity to New Stars Star clusters older than 10 Myr have no associated clouds Leisawitz, 1989
67
Cascading SF Dispersing clouds may spark SF elsewhere Hartmann M51, HST
68
Putting it all Together Cloud Core Formation Protostar Collapse Stars Form Cloud Dispersal Cloud Formation Cascading SF 014 10 - 20 Myr
69
Nagging Questions Do clouds form from HI of H 2 ? How long before cores form? What effect does the magnetic field have on turbulence?
70
Thanks Tom Quinn, Fabio Governato, Julianne Dalcanton, Andrew Connely, Bruce Hevly Adrienne and David for making me dinner Everybody who came to my practice talk
71
Gas In-fall Onto Cores Lee, 2001
72
Alignment
73
MHD Turbulence Padoan, 2004
74
Core Densities Enoch, 2008
75
Location Huff & Stahler, 2006
76
More Dispersal Jorgensen, 2007
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.