Download presentation
1
DATA RESOURCE MANAGEMENT
2
Data Hierarchy in a Computer System
3
Entitities and Attributes
4
Problems with the Traditional File Environment
Data redundancy Program-Data dependence Lack of flexibility Poor security Lack of data-sharing and availability
5
Traditional File Processing
Figure 7-3
6
Database Management System (DBMS)
Creates and maintains databases Eliminates requirement for data definition statements Acts as interface between application programs and physical data files Separates logical and physical views of data
7
The Contemporary Database Environment
8
Components of DBMS Data definition language: Specifies content and structure of database and defines each data element Data manipulation language: Manipulates data in a database Data dictionary: Stores definitions of data elements, and data characteristics
9
Sample Data Dictionary Report
10
Relational Data Model Figure 7-6
11
Three Basic Operations in a Relational Database
Select: Creates subset of rows that meet specific criteria Join: Combines relational tables to provide users with information Project: Enables users to create new tables containing only relevant information
12
Three Basic Operations in a Relational Database
Figure 7-7
13
FLAT FILE – NOT NORMALIZED
14
A Normalized Relation of ORDER
15
Ensuring Database Integrity
Database integrity involves the maintenance of the logical and business rules of the database. There are two kinds of “DB Integrity” that must be addressed: Entity Integrity Referential Integrity
16
Entity Integrity Entity integrity deals with within-entity rules.
These rules deal with ranges and the permission of null values in attributes or possibly between records
17
Examples of Entity Integrity
Data Type Integrity: very common and most basic. Checks only for “data type” compatibility with DB Schema, such as: numeric, character, logical, date format, etc. Commonly referred to in GIS manuals as: Range and List domains Ranges - acceptable Numeric ranges for input List - acceptable text entries or drop-down lists.
18
Enforcing Integrity Not a trivial task!
Not all database management systems or GIS software enable users to “enforce data integrity” during attribute entry or edit sessions. Therefore, the programmer or the Database Administrator must enforce and/or check for “Integrity.”
19
Referential Integrity
Referential integrity concerns two or more tables that are related. Example: IF table A contains a foreign key that matches the primary key of table B THEN values of this foreign key either match the value of the primary key for a row in table B or must be null. Necessary to avoid: Update anomaly, Delete anomaly.
20
Querying Databases: Elements of SQL Basic SQL Commands
SELECT: Specifies columns FROM: Identifies tables or views WHERE: Specifies conditions
21
Using SQL- Structured Query Language
SQL is a standard database protocol, adopted by most ‘relational’ databases Provides syntax for data: Definition Retrieval Functions (COUNT, SUM, MIN, MAX, etc) Updates and Deletes
22
SQL Examples CREATE TABLE SALESREP DELETE table
Item definition expression(s) {item, type, (width)} DELETE table WHERE expression
23
Data Retrieval SELECT list FROM table WHERE condition
list - a list of items or * for all items WHERE - a logical expression limiting the number of records selected can be combined with Boolean logic: AND, OR, NOT ORDER may be used to format results
24
UPDATE tables SET item = expression WHERE expression INSERT INTO table
VALUES …..
25
Database Normalization
Normalization: The process of structuring data to minimize duplication and inconsistencies. The process usually involves breaking down a single Table into two or more tables and defining relationships between those tables. Normalization is usually done in stages, with each stage applying more rigorous rules to the types of information which can be stored in a table.
26
Normalization Normalization: a process for analyzing the design of a relational database Database Design - Arrangement of attributes into entities It permits the identification of potential problems in your database design Concepts related to Normalization: KEYS and FUNCTIONAL DEPENDENCE
27
Ex: Database Normalization (1)
Sample Student Activities DB Table Poorly Designed Non-unique records John Smith Test the Design by developing sample reports and queries
28
Ex: Database Normalization (2)
Created a unique “ID” for each Record in the Activities Table Required the creation of an “ID” look-up table for reporting (Students Table) Converted the “Flat-File into a Relational Database
29
Ex: Database Normalization (3)
Wasted Space Redundant data entry What about taking a 3rd Activity? Query Difficulties - trying to find all swimmers Data Inconsistencies - conflicting prices
30
Ex: Database Normalization (4)
Students table is fine Elimination of two columns and an Activities Table restructuring, Simplifies the Table BUT, we still have Redundant data (activity fees) and data insertion anomalies. Problem: If student #219 transfers we lose all references to Golf and its price.
31
Ex: Database Normalization (5)
Modify the Design to ensure that “every non-key field is dependent on the whole key” Creation of the Participants Table, corrects our problems and forms a union between 2 tables. This is a Better Design!
32
The Normal Forms A series of logical steps to take to normalize data tables First Normal Form Second Third Boyce Codd There’s more, but beyond scope of this
33
First Normal Form (1NF) All columns (fields) must be atomic
Means : no repeating items in columns Solution: make a separate table for each set of attributes with a primary key (parser, append query) Customers CustomerID Name Orders OrderID Item CustomerID OrderDate
34
Second Normal Form (2NF)
In 1NF and every non-key column is fully dependent on the (entire) primary key Means : Do(es) the key field(s) imply the rest of the fields? Do we need to know both OrderID and Item to know the Customer and Date? Clue: repeating fields Solution: Remove to a separate table (Make Table) Orders OrderID CustomerID OrderDate OrderDetails OrderID Item
35
Third Normal Form (3NF) In 2NF and every non-key column is mutually independent means : Calculations Solution: Put calculations in queries and forms OrderDetails OrderID Item Quantity Price Put expression in text control or in query: =Quantity * Price
36
Data Warehousing and Datamining
Data warehouse Supports reporting and query tools Stores current and historical data Consolidates data for management analysis and decision making
37
What is a Data Warehouse?
"A warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of data in support of management's decision making process". Bill Inmon (1990) "A Data Warehouse is a repository of integrated information, available for queries and analysis. Data and information are extracted from heterogeneous sources as they are generated.…” Anonymous
38
Components of a Data Warehouse
39
Data Mining ON-LINE ANALYTICAL PROCESSING (OLAP): ability to manipulate, analyze large volumes of data from multiple perspectives MINING: Seeking relationships that are not known in advance. A function of the software and data organization.
40
DW Characteristics Subject Oriented:Data that gives information about a particular subject instead of about a company's ongoing operations. Integrated: Data that is gathered into the data warehouse from a variety of sources and merged into a coherent whole. Time Variant: All data in the data warehouse is identified with a particular time period.
41
Data Acquisition The process of moving company data from the source systems into the warehouse. Often the most time-consuming and costly effort. Performed with software products known as ETL (Extract/Transform/Load) tools. Over 50 ETL tools on market.
42
Data Cleansing Typically performed in conjunction with data acquisition. A complicated process that validates and, if necessary, corrects the data before it is inserted. AKA "data scrubbing" or "data quality assurance".
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.