Presentation is loading. Please wait.

Presentation is loading. Please wait.

Scintillation Detectors

Similar presentations


Presentation on theme: "Scintillation Detectors"— Presentation transcript:

1 Scintillation Detectors
Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series

2 Elton Smith / Scintillation Detectors
Experiment basics B field ~ 5/3 T p = 0.3 B R = 1.5 GeV/c L = ½ p R = 4.71 m bp = p/√p2+mp2 = bK = p/√p2+mK2 = R = 3m tp = L/bpc = ns tK = L/bKc = ns DtpK = 0.76 ns Particle Identification by time-of-flight (TOF) requires Measurements with accuracies of ~ 0.1 ns Elton Smith / Scintillation Detectors

3 Measure the Flight Time between two Scintillators
Particle Trajectory 450 ns Stop Disc 20 cm TDC Start Disc 300 cm 400 cm 100 cm Elton Smith / Scintillation Detectors

4 Measure the Flight Time between two Scintillators
Particle Trajectory 450 ns Stop Disc 20 cm TDC Start Disc 300 cm 400 cm 100 cm Elton Smith / Scintillation Detectors

5 Propagation velocities
c = 30 cm/ns vscint = c/n = 20 cm/ns veff = 16 cm/ns vpmt = 0.6 cm/ns vcable = 20 cm/ns Dt ~ 0.1 ns Dx ~ 3 cm Elton Smith / Scintillation Detectors

6 TOF scintillators stacked for shipment
Elton Smith / Scintillation Detectors

7 CLAS detector open for repairs
Elton Smith / Scintillation Detectors

8 CLAS detector with FC pulled apart
Elton Smith / Scintillation Detectors

9 Start counter assembly
Elton Smith / Scintillation Detectors

10 Elton Smith / Scintillation Detectors
Scintillator types Organic Liquid Economical messy Solid Fast decay time long attenuation length Emission spectra Inorganic Anthracene Unused standard NaI, CsI Excellent g resolution Slow decay time BGO High density, compact Elton Smith / Scintillation Detectors

11 Photocathode spectral response
Elton Smith / Scintillation Detectors

12 Scintillator thickness
Minimizing material vs. signal/background CLAS TOF: 5 cm thick Penetrating particles (e.g. pions) loose 10 MeV Start counter: 0.3 cm thick Penetrating particles loose 0.6 MeV Photons, e+e− backgrounds ~ 1MeV contribute substantially to count rate Thresholds may eliminate these in TOF Elton Smith / Scintillation Detectors

13 Elton Smith / Scintillation Detectors
Light guides Goals Match (rectangular) scintillator to (circular) pmt Optimize light collection for applications Types Plastic Air None “Winston” shapes Elton Smith / Scintillation Detectors

14 Reflective/Refractive boundaries
Scintillator n = 1.58 acrylic PMT glass n = 1.5 Elton Smith / Scintillation Detectors

15 Reflective/Refractive boundaries
Air with reflective boundary Scintillator n = 1.58 PMT glass n = 1.5 (reflectance at normal incidence) Elton Smith / Scintillation Detectors

16 Reflective/Refractive boundaries
air Scintillator n = 1.58 PMT glass n = 1.5 Elton Smith / Scintillation Detectors

17 Reflective/Refractive boundaries
Scintillator n = 1.58 acrylic Large-angle ray lost PMT glass n = 1.5 Acceptance of incident rays at fixed angle depends on position at the exit face of the scintillator Elton Smith / Scintillation Detectors

18 Winston Cones - geometry
Elton Smith / Scintillation Detectors

19 Winston Cone - acceptance
Elton Smith / Scintillation Detectors

20 Photomultiplier tube, sensitive light meter
Gain ~ Electrodes Anode g e− Photocathode Dynodes 56 AVP pmt Elton Smith / Scintillation Detectors

21 Elton Smith / Scintillation Detectors
Window Transmittance Elton Smith / Scintillation Detectors

22 Elton Smith / Scintillation Detectors
Voltage dividers Equal voltage steps Maximum gain Progressive, higher voltage near anode Excellent linearity, limited gain Time optimized, higher voltage at cathode Good gain, fast response Zeners Stabilize voltages independent of gain Decoupling capacitors “reservoirs” of charge during pulsed operation Elton Smith / Scintillation Detectors

23 Elton Smith / Scintillation Detectors
Voltage Dividers d1 d2 d3 dN dN-1 dN-2 a k g 4 2.5 1 16.5 RL +HV −HV Equal Steps – Max Gain 6 2.5 1 1.25 1.5 1.75 3.5 4.5 8 10 44 RL Progressive Timing Linearity 4 2.5 1 1.4 1.6 3 21 RL Intermediate Elton Smith / Scintillation Detectors

24 Elton Smith / Scintillation Detectors
Voltage Divider Active components to minimize changes to timing and rate capability with HV Capacitors for increased linearity in pulsed applications Elton Smith / Scintillation Detectors

25 Elton Smith / Scintillation Detectors
High voltage Positive (cathode at ground) low noise, capacitative coupling Negative Anode at ground (no HV on signal) No (high) voltage Cockcroft-Walton bases Elton Smith / Scintillation Detectors

26 Effect of magnetic field on pmt
Elton Smith / Scintillation Detectors

27 Elton Smith / Scintillation Detectors
Housing Elton Smith / Scintillation Detectors

28 Compact UNH divider design
Elton Smith / Scintillation Detectors

29 Electrostatics near cathode at −HV
Stable performance with negative high voltage is achieved by Eliminating potential gradients in the vicinity of the photocathode. The electrostatic shielding and the can of the crystal are both Maintained at cathode potential by this arrangement. Elton Smith / Scintillation Detectors

30 Elton Smith / Scintillation Detectors
Dark counts Solid : Sea level Dashed: 30 m underground After-pulsing and Glass radioactivity Thermal Noise Cosmic rays Elton Smith / Scintillation Detectors

31 Signal for passing tracks
Elton Smith / Scintillation Detectors

32 Single photoelectron signal
Elton Smith / Scintillation Detectors

33 Pulse distortion in cable
Elton Smith / Scintillation Detectors

34 Elton Smith / Scintillation Detectors
Electronics Measure time Measure pulse height anode trigger dynode Elton Smith / Scintillation Detectors

35 Time-walk corrections
Elton Smith / Scintillation Detectors

36 Formalism: Measure time and position
PL PR TL TR X=0 X X=−L/2 X=+L/2 Mean is independent of x! Elton Smith / Scintillation Detectors

37 From single-photoelectron timing to counter resolution
The uncertainty in determining the passage of a particle through a scintillator has a statistical component, depending on the number of photoelectrons Npe that create the pulse. Intrinsic timing of electronic circuits Combined scintillator and pmt response Average path length variations in scintillator Single Photoelectron Response Note: Parameters for CLAS Elton Smith / Scintillation Detectors

38 Average time resolution
CLAS in Hall B Elton Smith / Scintillation Detectors

39 Formalism: Measure energy loss
PL PR TL TR X=0 X X=−L/2 X=+L/2 Geometric mean is independent of x! Elton Smith / Scintillation Detectors

40 Energy deposited in scintillator
Elton Smith / Scintillation Detectors

41 Elton Smith / Scintillation Detectors
Uncertainties Timing Assume that one pmt measures a time with uncertainty dt Mass Resolution Elton Smith / Scintillation Detectors

42 Integral magnetic shield
Elton Smith / Scintillation Detectors

43 Example: Kaon mass resolution by TOF
For a flight path of d = 500 cm, Assume Note: Elton Smith / Scintillation Detectors

44 Elton Smith / Scintillation Detectors
Velocity vs. momentum p+ K+ p Elton Smith / Scintillation Detectors

45 Elton Smith / Scintillation Detectors
Summary Scintillator counters have a few simple components Systems are built out of these counters Fast response allows for accurate timing The time resolution required for particle identification is the result of the time response of individual components scaled by √Npe Elton Smith / Scintillation Detectors

46 Elton Smith / Scintillation Detectors
Magnetic fields Elton Smith / Scintillation Detectors


Download ppt "Scintillation Detectors"

Similar presentations


Ads by Google