Download presentation
1
Scintillation Detectors
Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series
2
Elton Smith / Scintillation Detectors
Experiment basics B field ~ 5/3 T p = 0.3 B R = 1.5 GeV/c L = ½ p R = 4.71 m bp = p/√p2+mp2 = bK = p/√p2+mK2 = R = 3m tp = L/bpc = ns tK = L/bKc = ns DtpK = 0.76 ns Particle Identification by time-of-flight (TOF) requires Measurements with accuracies of ~ 0.1 ns Elton Smith / Scintillation Detectors
3
Measure the Flight Time between two Scintillators
Particle Trajectory 450 ns Stop Disc 20 cm TDC Start Disc 300 cm 400 cm 100 cm Elton Smith / Scintillation Detectors
4
Measure the Flight Time between two Scintillators
Particle Trajectory 450 ns Stop Disc 20 cm TDC Start Disc 300 cm 400 cm 100 cm Elton Smith / Scintillation Detectors
5
Propagation velocities
c = 30 cm/ns vscint = c/n = 20 cm/ns veff = 16 cm/ns vpmt = 0.6 cm/ns vcable = 20 cm/ns Dt ~ 0.1 ns Dx ~ 3 cm Elton Smith / Scintillation Detectors
6
TOF scintillators stacked for shipment
Elton Smith / Scintillation Detectors
7
CLAS detector open for repairs
Elton Smith / Scintillation Detectors
8
CLAS detector with FC pulled apart
Elton Smith / Scintillation Detectors
9
Start counter assembly
Elton Smith / Scintillation Detectors
10
Elton Smith / Scintillation Detectors
Scintillator types Organic Liquid Economical messy Solid Fast decay time long attenuation length Emission spectra Inorganic Anthracene Unused standard NaI, CsI Excellent g resolution Slow decay time BGO High density, compact Elton Smith / Scintillation Detectors
11
Photocathode spectral response
Elton Smith / Scintillation Detectors
12
Scintillator thickness
Minimizing material vs. signal/background CLAS TOF: 5 cm thick Penetrating particles (e.g. pions) loose 10 MeV Start counter: 0.3 cm thick Penetrating particles loose 0.6 MeV Photons, e+e− backgrounds ~ 1MeV contribute substantially to count rate Thresholds may eliminate these in TOF Elton Smith / Scintillation Detectors
13
Elton Smith / Scintillation Detectors
Light guides Goals Match (rectangular) scintillator to (circular) pmt Optimize light collection for applications Types Plastic Air None “Winston” shapes Elton Smith / Scintillation Detectors
14
Reflective/Refractive boundaries
Scintillator n = 1.58 acrylic PMT glass n = 1.5 Elton Smith / Scintillation Detectors
15
Reflective/Refractive boundaries
Air with reflective boundary Scintillator n = 1.58 PMT glass n = 1.5 (reflectance at normal incidence) Elton Smith / Scintillation Detectors
16
Reflective/Refractive boundaries
air Scintillator n = 1.58 PMT glass n = 1.5 Elton Smith / Scintillation Detectors
17
Reflective/Refractive boundaries
Scintillator n = 1.58 acrylic Large-angle ray lost PMT glass n = 1.5 Acceptance of incident rays at fixed angle depends on position at the exit face of the scintillator Elton Smith / Scintillation Detectors
18
Winston Cones - geometry
Elton Smith / Scintillation Detectors
19
Winston Cone - acceptance
Elton Smith / Scintillation Detectors
20
Photomultiplier tube, sensitive light meter
Gain ~ Electrodes Anode g e− Photocathode Dynodes 56 AVP pmt Elton Smith / Scintillation Detectors
21
Elton Smith / Scintillation Detectors
Window Transmittance Elton Smith / Scintillation Detectors
22
Elton Smith / Scintillation Detectors
Voltage dividers Equal voltage steps Maximum gain Progressive, higher voltage near anode Excellent linearity, limited gain Time optimized, higher voltage at cathode Good gain, fast response Zeners Stabilize voltages independent of gain Decoupling capacitors “reservoirs” of charge during pulsed operation Elton Smith / Scintillation Detectors
23
Elton Smith / Scintillation Detectors
Voltage Dividers d1 d2 d3 dN dN-1 dN-2 a k g 4 2.5 1 16.5 RL +HV −HV Equal Steps – Max Gain 6 2.5 1 1.25 1.5 1.75 3.5 4.5 8 10 44 RL Progressive Timing Linearity 4 2.5 1 1.4 1.6 3 21 RL Intermediate Elton Smith / Scintillation Detectors
24
Elton Smith / Scintillation Detectors
Voltage Divider Active components to minimize changes to timing and rate capability with HV Capacitors for increased linearity in pulsed applications Elton Smith / Scintillation Detectors
25
Elton Smith / Scintillation Detectors
High voltage Positive (cathode at ground) low noise, capacitative coupling Negative Anode at ground (no HV on signal) No (high) voltage Cockcroft-Walton bases Elton Smith / Scintillation Detectors
26
Effect of magnetic field on pmt
Elton Smith / Scintillation Detectors
27
Elton Smith / Scintillation Detectors
Housing Elton Smith / Scintillation Detectors
28
Compact UNH divider design
Elton Smith / Scintillation Detectors
29
Electrostatics near cathode at −HV
Stable performance with negative high voltage is achieved by Eliminating potential gradients in the vicinity of the photocathode. The electrostatic shielding and the can of the crystal are both Maintained at cathode potential by this arrangement. Elton Smith / Scintillation Detectors
30
Elton Smith / Scintillation Detectors
Dark counts Solid : Sea level Dashed: 30 m underground After-pulsing and Glass radioactivity Thermal Noise Cosmic rays Elton Smith / Scintillation Detectors
31
Signal for passing tracks
Elton Smith / Scintillation Detectors
32
Single photoelectron signal
Elton Smith / Scintillation Detectors
33
Pulse distortion in cable
Elton Smith / Scintillation Detectors
34
Elton Smith / Scintillation Detectors
Electronics Measure time Measure pulse height anode trigger dynode Elton Smith / Scintillation Detectors
35
Time-walk corrections
Elton Smith / Scintillation Detectors
36
Formalism: Measure time and position
PL PR TL TR X=0 X X=−L/2 X=+L/2 Mean is independent of x! Elton Smith / Scintillation Detectors
37
From single-photoelectron timing to counter resolution
The uncertainty in determining the passage of a particle through a scintillator has a statistical component, depending on the number of photoelectrons Npe that create the pulse. Intrinsic timing of electronic circuits Combined scintillator and pmt response Average path length variations in scintillator Single Photoelectron Response Note: Parameters for CLAS Elton Smith / Scintillation Detectors
38
Average time resolution
CLAS in Hall B Elton Smith / Scintillation Detectors
39
Formalism: Measure energy loss
PL PR TL TR X=0 X X=−L/2 X=+L/2 Geometric mean is independent of x! Elton Smith / Scintillation Detectors
40
Energy deposited in scintillator
Elton Smith / Scintillation Detectors
41
Elton Smith / Scintillation Detectors
Uncertainties Timing Assume that one pmt measures a time with uncertainty dt Mass Resolution Elton Smith / Scintillation Detectors
42
Integral magnetic shield
Elton Smith / Scintillation Detectors
43
Example: Kaon mass resolution by TOF
For a flight path of d = 500 cm, Assume Note: Elton Smith / Scintillation Detectors
44
Elton Smith / Scintillation Detectors
Velocity vs. momentum p+ K+ p Elton Smith / Scintillation Detectors
45
Elton Smith / Scintillation Detectors
Summary Scintillator counters have a few simple components Systems are built out of these counters Fast response allows for accurate timing The time resolution required for particle identification is the result of the time response of individual components scaled by √Npe Elton Smith / Scintillation Detectors
46
Elton Smith / Scintillation Detectors
Magnetic fields Elton Smith / Scintillation Detectors
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.