Download presentation
Presentation is loading. Please wait.
Published byFerdinand Miles Modified over 9 years ago
1
Characterization Presentation Performed by: Ron Amit Supervisor: Tanya Chernyakova Semester: Spring 2012 1 Sub-Nyquist Sampling in Ultrasound Imaging
2
Ultrasound Device: 2
3
Problem : Modern devices require large number of receivers Acoustic pulses are of high bandwidth Typical Nyquist rate is 20 MHz * Number of receivers Large amount of data must be processed High computational cost 3
4
4 Solution : Reduce sample rate, while still extracting the same required information for image reconstruction
5
FRI Model: 5
6
Single receiver solution : Unknown parameters are extracted from low rate samples. 6
7
Multichannel Sampling Scheme : Different sampling scheme for a single receiver, using bank of integrators 7
8
Problem : Low SNR of received signal at a single receiver. Solution : Use array of receivers and combine the received signals – Beamforming process. Beamformed signal has improved SNR Represents reflections from a single angle – forming an image line 8
9
Beamforming : 9
10
Compressed Beamforming : Combines Beamforming and sampling process. Received signals are sampled at Sub-Nyquist rate The scheme’s output is a group of Beamformed signal ‘s Fourier coefficients Digital processing extracts the Beamformed signal parameters 10
11
Using modulation with analog kernels and integration First Scheme : Problem : Analog kernels are complicated for hardware implementation 11
12
Simplified Scheme : Based on approximating each received signal by only Ki Fourier coefficients Each received signal is filtered by a simple analog filter Linear transformation on the samples provides the Beamformed signal Fourier coefficients 12
13
13 Analog Processing Sub – Nyquist Sampling Receiver Elements Low Rate Samples Digital Processing Amplitudes and delays of reflections Image Reconstruction Block Diagram :
14
14 Project Goals : Main goal: Prove the preferability of the Xampling method for Ultrasound devices Sub goals: Alternative image reconstruction Optimize algorithm and improve runtime Explore hardware implementation
15
15 Semester 1: Understand and run current code Improvement: Image construction from pulses Lighter OMP algorithm Semester 2: Algorithm optimization: Flow graph algorithm Complexity analysis of subroutines Runtime optimization System analysis : How to implement on processer platform for maximal performance Mission Plan:
16
16 תכנית עד מצגת אמצע 29.5-5.6 לימוד של שיטות סטנדרטיות לייצוג תמונה מ -beamformed data 5.6-12.6 ייצוג אלטרנטיבי של תמונה מתוצאות קיימות ( השיות ואמפליטודות ) 12.6-19.6 השוואה בין תוצאות שמתקבלות בשתי שיטות, fine tuning של שיטה אלטרנטיבית 19.6-26.6 לימוד תיאורטי של אלגוריתם ה -OMP, ניתוח של האלגוריתם שמומש אצל נועם 28.6 – 27.7 תקופת בחינות 27.7 – 1.8 הכנה למצגת אמצע
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.