Presentation is loading. Please wait.

Presentation is loading. Please wait.

Algebra 2 10/23/14 Review for Test 2 (non-calculator section)

Similar presentations


Presentation on theme: "Algebra 2 10/23/14 Review for Test 2 (non-calculator section)"โ€” Presentation transcript:

1 Algebra 2 10/23/14 Review for Test 2 (non-calculator section)
What youโ€™ll learn and whyโ€ฆ I can learn how to solve the problems in the Practice Test so I can ace Test 2 on Monday. HW: Know the formulas and methods needed to solve each problem in the Practice Test. Warm-up: Silently recite the Quadratic Formula 5x. Silently recite the formula to find the x-coordinate of the vertex of a quadratic equation in standard form 5x.

2 1. What is the product of ๐Ÿ’+๐Ÿ๐’Š and ๐Ÿ’โˆ’๐Ÿ๐’Š written in standard form?
20 16 + 4i D. 16 โ€“ 4i Notes: 4+2๐‘– and 4โˆ’2๐‘– are complex conjugates. The product of complex conjugates is always a real number. From this information, choices C and D should be eliminated. Rule or Formula to multiply complex conjugates: ๐’‚+๐’ƒ๐’Š ๐’‚โˆ’๐’ƒ๐’Š = ๐’‚ ๐Ÿ + ๐’ƒ ๐Ÿ ๐Ÿ’+๐Ÿ๐’Š ๐Ÿ’โˆ’๐Ÿ๐’Š = ๐Ÿ’ ๐Ÿ + ๐Ÿ ๐Ÿ =๐Ÿ๐Ÿ”+๐Ÿ’=๐Ÿ๐ŸŽ The answer is B 20. Your Turn: Answer Practice Test #1.

3 Your Turn: Answer Practice Test #2
2. Simplify ๐Ÿ‘+๐Ÿ’๐’Š โˆ’(โˆ’๐Ÿโˆ’๐Ÿ“๐’Š). A. โˆ’๐Ÿ+๐Ÿ—๐’Š B. ๐Ÿโˆ’๐’Š C. ๐Ÿ“+๐Ÿ—๐’Š D. ๐Ÿ“โˆ’๐’Š Notes: To subtract a complex number, add its opposite. One Method: 3+4๐‘– โˆ’ โˆ’2โˆ’5๐‘– = 3+4๐‘– +(2+5๐‘–) =3+4๐‘–+2+5๐‘– =๐Ÿ“+๐Ÿ—๐’Š Answer: C Your Turn: Answer Practice Test #2

4 3. Find the domain and range of each function.
B D: R: C D: R: D D: R: All real numbers All real numbers All real numbers All real numbers ๐’šโ‰ฅ๐ŸŽ ๐’š โ‰ค ๐ŸŽ ๐’š โ‰ค 1 ๐’šโ‰ฅโˆ’๐Ÿ Notes: The domain of a function is the set of all possible x values. The range of a function is the set of all possible y values.

5 Your Turn: Answer Practice Test #4.
4. Which of the following is not true of the function ๐’‡ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ๐’™+๐Ÿ“? 2. Since ๐‘Ž>0, the parabola opens up, hence the function has a minimum. The minimum is the y-coordinate of the vertex. To find the minimum, first find the x-coordinate of the vertex. Use the formula for the axis of symmetry to find the x-coordinate, ๐’™= โˆ’๐’ƒ ๐Ÿ๐’‚ The y-intercept is 5. The minimum value is 4. The axis of symmetry is ๐’™=๐Ÿ. The vertex is at (1, 5). Notes: 1. The function ๐‘“ is in standard form, ๐‘“ ๐‘ฅ =๐‘Ž ๐‘ฅ 2 +๐‘๐‘ฅ+๐‘. 2. The y-intercept is at x=0, so yโˆ’intercept=๐‘=5. Hence, Choice A is true. Since a = 1 and b = -2, ๐’™= โˆ’(โˆ’๐Ÿ) ๐Ÿ(๐Ÿ) =๐Ÿ 3. To find the y-coordinate of the vertex, substitute the value of x into the original function. ๐’š= (๐Ÿ) ๐Ÿ โˆ’๐Ÿ ๐Ÿ +๐Ÿ“=๐Ÿโˆ’๐Ÿ+๐Ÿ“=โˆ’๐Ÿ+๐Ÿ“=๐Ÿ’ Hence, Choices B and C are true. The statement which is not true is D. The vertex is at (1, 4) Your Turn: Answer Practice Test #4.

6 Your Turn: Answer Practice Test #5
5. If ๐’™ ๐Ÿ โˆ’๐Ÿ”๐’™+๐Ÿ= ๐’™โˆ’๐’‰ ๐Ÿ +๐’Œ, what is the value of ๐’Œ? -7 -11 7 11 Notes: 1. ๐‘ฅโˆ’โ„Ž 2 +๐‘˜ is the vertex form of a quadratic expression. 2. In the vertex form, (h, k) is the vertex and ๐‘˜ is the y-coordinate . Possible method: Find the coordinates of the vertex by using the formula for the axis of symmetry or the x-coordinate: ๐’™= โˆ’๐’ƒ ๐Ÿ๐’‚ = โˆ’(โˆ’๐Ÿ”) ๐Ÿ(๐Ÿ) = ๐Ÿ” ๐Ÿ =๐Ÿ‘ Next, solve for the y-coordinate of the vertex by substituting ๐‘ฅ=3 into the original expression. ๐’š= (๐Ÿ‘) ๐Ÿ โˆ’๐Ÿ” ๐Ÿ‘ +๐Ÿ=๐Ÿ—โˆ’๐Ÿ๐Ÿ–+๐Ÿ=โˆ’๐Ÿ—+๐Ÿ=โˆ’๐Ÿ• Since ๐’š=โˆ’๐Ÿ•, ๐’•๐’‰๐’†๐’“๐’†๐’‡๐’๐’“๐’† ๐’Œ=โˆ’๐Ÿ•. The correct answer is A. Alternative Method: You could use completing the square to convert from standard form to vertex form. Your Turn: Answer Practice Test #5

7 6. Find the roots of ๐Ÿ๐Ÿ” ๐’™ ๐Ÿ +๐Ÿ‘=๐ŸŽ. A. ๐‘ฅ=ยฑ 3 4 Solution:
Goal: Rewrite the equation so that it is in the form ๐’™ ๐Ÿ =๐’„. ๐’™=ยฑ ๐’„ B. ๐‘ฅ=ยฑ โˆ’3 16 C. ๐‘ฅ=ยฑ ๐‘– 3 4 16 ๐‘ฅ 2 +3=0 D. ๐‘ฅ=ยฑ 16 ๐‘ฅ 2 =โˆ’3 Subtract 3 from each side ๐‘ฅ 2 = โˆ’3 16 Divide each side by 16. Note: Eliminate answers that are not in simplest form. Choices A and B are eliminated because they have a radical in the denominator. The choices left are C and D. C has nonreal solutions while D has real solutions. ๐‘ฅ=ยฑ โˆ’3 16 ๐’™ ๐Ÿ =๐’„. ๐’™=ยฑ ๐’„ ๐‘ฅ=ยฑ โˆ’ ๐๐ฎ๐จ๐ญ๐ข๐ž๐ง๐ญ ๐‘๐ฎ๐ฅ๐ž ๐จ๐Ÿ ๐‘๐š๐๐ข๐œ๐š๐ฅ๐ฌ ๐’Ž ๐’ = ๐’Ž ๐’ ๐’™=ยฑ ๐’Š ๐Ÿ‘ ๐Ÿ’ Simplify.

8 7. Factor ๐Ÿ๐Ÿ“ ๐’™ ๐Ÿ +๐Ÿ”๐Ÿ’. Notes: 25 ๐‘ฅ is a Sum of Two Squares. The factors of a Sum of Two Squares are two complex conjugates. Eliminate Choices A and B. A. 5๐‘ฅ+8 (5๐‘ฅโˆ’8) B. (5๐‘ฅ+8)(5๐‘ฅ+8) C. (5๐‘ฅโˆ’8๐‘–)(5๐‘ฅ+8๐‘–) D. (5๐‘ฅ+8๐‘–)(5๐‘ฅ+8๐‘–) The rule is: ๐’‚ ๐Ÿ + ๐’ƒ ๐Ÿ =(๐’‚+๐’ƒ๐’Š)(๐’‚โˆ’๐’ƒ๐’Š) ๐Ÿ๐Ÿ“๐’™ ๐Ÿ +๐Ÿ”๐Ÿ’=(๐Ÿ“๐’™+๐Ÿ–๐’Š)(๐Ÿ“๐’™โˆ’๐Ÿ–๐’Š) The answer is C. Alternative Method: Work Backwards Start from the answer choices. Use FOIL to find which factors will multiply to get the product ๐Ÿ๐Ÿ“๐’™ ๐Ÿ +๐Ÿ”๐Ÿ’. ๐Ÿ“๐’™โˆ’๐Ÿ–๐’Š ๐Ÿ“๐’™+๐Ÿ–๐’Š =๐Ÿ๐Ÿ“ ๐’™ ๐Ÿ +๐Ÿ’๐ŸŽ๐’™๐’Šโˆ’๐Ÿ’๐ŸŽ๐’™๐’Šโˆ’๐Ÿ”๐Ÿ’ ๐’Š ๐Ÿ =๐Ÿ๐Ÿ“ ๐’™ ๐Ÿ โˆ’๐Ÿ”๐Ÿ’ โˆ’๐Ÿ =๐Ÿ๐Ÿ“ ๐’™ ๐Ÿ +๐Ÿ”๐Ÿ’ Your Turn: Answer Practice Test #7.

9 8. Solve ๐’™ ๐Ÿ +๐Ÿ–๐Ÿ=๐ŸŽ over the set of complex numbers.
A. ยฑ9 B. ยฑ9๐‘– C. ยฑ81 D. ยฑ81๐‘– Notes: The goal is to rewrite the equation in the form: ๐’™ ๐Ÿ =๐’„ ๐’™=ยฑ ๐’„ ๐‘ฅ 2 +81=0 ๐‘ฅ 2 =โˆ’81 Subtract 81 from each side. ๐‘ฅ=ยฑ โˆ’81 ๐’™ ๐Ÿ =๐’„ ๐’™=ยฑ ๐’„ ๐‘ฅ=ยฑ9๐‘– Simplify. ๐’Š= โˆ’๐Ÿ The answer is B. Your Turn: Answer Practice Test #8.

10 Your Turn: Answer Practice Test #9.
Function A and Function B are continuous quadratic functions. Function A Function B ๐’‡ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ’๐’™โˆ’๐Ÿ“ Which function has a greater negative x-intercept? Function A Function B The x-intercepts are equal. Solution: You need to find the negative x-intercepts of both function and then compare to find the greater number. The negative x-intercept of Function B is -1. Use factoring to find the x-intercepts of Function A. (Other methods may be used.) ๐’™ ๐Ÿ +๐Ÿ’๐’™โˆ’๐Ÿ“=๐ŸŽ ๐’‚=๐Ÿ, ๐’ƒ=๐Ÿ’, ๐’„=โˆ’๐Ÿ“ ๐’™+๐Ÿ“ ๐’™โˆ’๐Ÿ =๐ŸŽ Look for factors of c whose sum is b. Use 5 and -1 ๐’™+๐Ÿ“=๐ŸŽ ๐’๐’“ ๐’™โˆ’๐Ÿ=๐ŸŽ Set each factor equal to 0. ๐’™=โˆ’๐Ÿ“ ๐’๐’“ ๐’™=๐Ÿ Solve for x. The negative x-intercept of Function A is -5. Since โˆ’๐Ÿ>โˆ’๐Ÿ“, the answer is B. Your Turn: Answer Practice Test #9.

11 10. Solve the equation ๐Ÿ“ ๐’™ ๐Ÿ +๐Ÿ“๐’™=๐Ÿ”๐ŸŽ by factoring.
๐’™=โˆ’๐Ÿ’ ๐’๐’“ ๐’™=๐Ÿ‘ ๐’™=๐Ÿ’ ๐’๐’“ ๐’™=โˆ’๐Ÿ‘ Steps: ๐Ÿ“ ๐’™ ๐Ÿ +๐Ÿ“๐’™=๐Ÿ”๐ŸŽ ๐’™ ๐Ÿ +๐’™=๐Ÿ๐Ÿ Divide each side by the GCF, 5. ๐’™ ๐Ÿ +๐’™โˆ’๐Ÿ๐Ÿ=๐ŸŽ Subtract 12 from each side. (๐’™+๐Ÿ’)(๐’™โˆ’๐Ÿ‘)=๐ŸŽ Look for factors of -12 whose sum is 1. Use 4 and -3. ๐’™+๐Ÿ’=๐ŸŽ ๐’๐’“ ๐’™โˆ’๐Ÿ‘=๐ŸŽ Set each factor equal to 0. ๐’™=โˆ’๐Ÿ’ ๐’๐’“ ๐’™=๐Ÿ‘ Solve for x. The answer is C. Alternative Method: Work Backwards Substitute the answer choices into the given equation. See which solutions satisfy the given equation. Your Turn: Answer Practice Test #10.

12 Your Turn: Answer Practice Test #11.
11. Which of the following functions has its vertex below the x-axis? A. ๐’‡ ๐’™ =โˆ’ ๐’™ ๐Ÿ B. ๐’‡ ๐’™ =โˆ’๐Ÿ“ (๐’™+๐Ÿ’) ๐Ÿ +๐Ÿ‘ C. ๐’‡ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ D. ๐’‡ ๐’™ =๐Ÿ (๐’™โˆ’๐Ÿ) ๐Ÿ โˆ’๐Ÿ Solution: To determine which vertex is below the x-axis, graph the vertex of each function. Vertex Form: ๐‘“ ๐‘ฅ =๐‘Ž (๐‘ฅโˆ’โ„Ž) 2 +๐‘˜ Vertex is at (h, k) Vertex of A: (0, 0) Vertex of C: (0, 2) Vertex of B: (-4, 3) Vertex of D: (1, -2) The answer is D. Is there a pattern? What pattern do you see? Given the vertex (h, k), when k < 0, then the vertex is below the x-axis. Your Turn: Answer Practice Test #11.

13 12. What is the equation of the parabola shown?
Notes: 1. The parabola opens up, therefore a > 0. B. ๐‘“ ๐‘ฅ =โˆ’ 1 4 ๐‘ฅ 2 C. ๐‘“ ๐‘ฅ = 1 4 ๐‘ฅ 2 Eliminate Choices A and B. D. ๐‘“ ๐‘ฅ = 4๐‘ฅ 2 2. USE NICE POINTS! The point (1, 4) is on the parabola. Check by substituting x = 1 and y = 4 into the remaining equations C and D. C. ๐‘“ 1 = 1 4 (1) 2 = 1 4 D. ๐‘“ 1 =4 (1) 2 = 4 The answer is D. Your Turn: Answer Practice Test #12.

14 13. What is the solution set of ๐Ÿ‘ ๐’™ ๐Ÿ +๐Ÿ–๐’™>โˆ’๐Ÿ‘๐’™โˆ’๐Ÿ”?
B. โˆ’3โ‰ค๐‘ฅโ‰คโˆ’ 2 3 C. ๐‘ฅ<โˆ’3 ๐‘œ๐‘Ÿ ๐‘ฅ>โˆ’ 2 3 D. ๐‘ฅ>โˆ’3 ๐‘œ๐‘Ÿ ๐‘ฅ>โˆ’ 2 3

15 13. What is the solution set of ๐Ÿ‘ ๐’™ ๐Ÿ +๐Ÿ–๐’™>โˆ’๐Ÿ‘๐’™โˆ’๐Ÿ”?
B. โˆ’3โ‰ค๐‘ฅโ‰คโˆ’ 2 3 C. ๐‘ฅ<โˆ’3 ๐‘œ๐‘Ÿ ๐‘ฅ>โˆ’ 2 3 D. ๐‘ฅ>โˆ’3 ๐‘œ๐‘Ÿ ๐‘ฅ>โˆ’ 2 3 STEPS 1. Write the original inequality. ๐Ÿ‘ ๐’™ ๐Ÿ +๐Ÿ–๐’™>โˆ’๐Ÿ‘๐’™โˆ’๐Ÿ” 2. Set one side of the inequality to 0. (Add 3x and 6 to each side.) ๐Ÿ‘ ๐’™ ๐Ÿ +๐Ÿ–๐’™+๐Ÿ‘๐’™+๐Ÿ”>๐ŸŽ 3. Combine like terms. ๐Ÿ‘ ๐’™ ๐Ÿ +๐Ÿ๐Ÿ๐’™+๐Ÿ”>๐ŸŽ 4. Change the inequality sign to equal sign. ๐Ÿ‘ ๐’™ ๐Ÿ +๐Ÿ๐Ÿ๐’™+๐Ÿ”=๐ŸŽ 5. Solve the quadratic equation to find the zeros or x-intercepts. ๐’™=โˆ’๐Ÿ‘ ๐’๐’“ ๐’™=โˆ’ ๐Ÿ ๐Ÿ‘ 6. Mark the x-intercepts on a numberline. The numberline is now divided into three intervals: A, B, and C. Sketch the parabola. 7. Determine in which interval/s the solutions lie. Write the solution set using the correct inequality symbols. 8. Check by using test values. ๐ด๐‘ก ๐‘ฅ=โˆ’4: 3 โˆ’ โˆ’4 +6=48โˆ’44+6= >0 ๐ด๐‘ก ๐‘ฅ=0: 3 (0) = >0 A B C โˆ’ ๐Ÿ ๐Ÿ‘ โˆ’๐Ÿ‘ The solutions lie in intervals A and C. ๐’™<โˆ’๐Ÿ‘ ๐’๐’“ ๐’™ >โˆ’ ๐Ÿ ๐Ÿ‘

16 14. Which of the following quadratic equations has no real roots?
B. ๐Ÿ“ ๐’™ ๐Ÿ โˆ’๐Ÿ‘๐’™โˆ’๐Ÿ’=๐ŸŽ Write in standard form. ๐‘Ž=5, ๐‘=โˆ’3, ๐‘=โˆ’4 5 ๐‘ฅ 2 +3๐‘ฅโˆ’4=0 ๐‘ 2 โˆ’4๐‘Ž๐‘= โˆ’3 2 โˆ’4 5 โˆ’4 >๐ŸŽ ๐‘Ž=5, ๐‘=3, ๐‘=โˆ’4 + + ๐‘ 2 โˆ’4๐‘Ž๐‘= โˆ’4 5 โˆ’4 >๐ŸŽ + + D. ๐Ÿ“ ๐’™ ๐Ÿ +๐Ÿ‘๐’™=โˆ’๐Ÿ’ C. ๐Ÿ“ ๐’™ ๐Ÿ =๐Ÿ‘๐’™ Write in standard form. Write in standard form. 5 ๐‘ฅ 2 +3๐‘ฅ+4=0 5 ๐‘ฅ 2 โˆ’3๐‘ฅ=0 ๐‘Ž=5, ๐‘=โˆ’3, ๐‘=0 ๐‘Ž=5, ๐‘=3, ๐‘=4 ๐‘ 2 โˆ’4๐‘Ž๐‘= โˆ’4 5 4 <๐ŸŽ ๐‘ 2 โˆ’4๐‘Ž๐‘= โˆ’3 2 โˆ’4 5 0 >๐ŸŽ - + + + Note: Use the discriminant, ๐’ƒ ๐Ÿ โˆ’๐Ÿ’๐’‚๐’„, to find out which quadratic equation has no real roots. If ๐’ƒ ๐Ÿ โˆ’๐Ÿ’๐’‚๐’„ > 0, the equation has 2 real solutions. If ๐’ƒ ๐Ÿ โˆ’๐Ÿ’๐’‚๐’„ = 0, the equation has 1 real solution. If ๐’ƒ ๐Ÿ โˆ’๐Ÿ’๐’‚๐’„ < 0, the equation has 2 nonreal solutions. 9 80

17 Your Turn: Answer Practice Test #15.
15. Find the vertex of ๐’š= ๐Ÿ๐’™ ๐Ÿ โˆ’๐Ÿ’๐’™+๐Ÿ“ and state if it is a maximum or minimum. Notes: Since a > 0, the parabola opens up and it has a minimum value. (1, 3); maximum (1, 3); minimum (3, 1); maximum (3, 1); minimum Eliminate Choices A and C. To find the x-coordinate of the vertex, use the formula ๐’™= โˆ’๐’ƒ ๐Ÿ๐’‚ . ๐’™= โˆ’๐’ƒ ๐Ÿ๐’‚ = โˆ’(โˆ’๐Ÿ’) ๐Ÿ(๐Ÿ) = ๐Ÿ’ ๐Ÿ’ =๐Ÿ The answer is B. Your Turn: Answer Practice Test #15.


Download ppt "Algebra 2 10/23/14 Review for Test 2 (non-calculator section)"

Similar presentations


Ads by Google