Download presentation
Presentation is loading. Please wait.
Published byHollie Allison Modified over 9 years ago
1
Unit 1 revision Q 1 What is the perpendicular bisector of a line ?
2
Unit 1 revision Q 2 How do you find the median AM of triangle ABC ?
3
Unit 1 revision Q 3 What is the gradient of a vertical line ?
4
Unit 1 revision Q 4 How do you find where two lines intersect ?
5
Unit 1 revision Q 5 What two things do you require in order to find the equation of a straight line ?
6
Unit 1 revision Q 6 What is the general equation of a straight line passing through (a,b) with gradient m ? x y (a,b)
7
Unit 1 revision Q 7 How do you find the gradient of a line, given the angle the line makes with the positive direction of the x-axis ?
8
Unit 1 revision Q 8 What is the gradient of a horizontal line ?
9
Unit 1 revision Q 9 What is an altitude of a triangle ?
10
Unit 1 revision Q 10 How do you change from degrees to radians ?
11
Unit 1 revision Q 11 What is an equivalent expression for y = a x using logs ?
12
Unit 1 revision Q 12 How do you solve an equation like 3sinx+1 = 0 ?
13
Unit 1 revision Q 13 How do you draw the graph of 3+f(x) given the graph of f(x) ?
14
Unit 1 revision Q 14 How do you find the exact values of sin x or tan x given cos x = a ? b
15
Unit 1 revision Q 15 How do you draw the graph of –f(x) given the graph of f(x) ?
16
Unit 1 revision Q 16 Which two points does the graph of y = log a x always pass through ?
17
Unit 1 revision Q 17 If f(x) = x n then what is f ’ (x) ?
18
Unit 1 revision Q 18 How do you show that a curve is always decreasing?
19
Unit 1 revision Q 19 For a curve, how do you find the stationary points and their nature ?
20
Unit 1 revision Q 20 How do you know when a recurrence relation of the form u n+1 = au n + b converges ?
21
Unit 1 revision Q 21 If you know the graph of f(x) how do you draw the graph of f(-x)?
22
Unit 1 revision Q 22 How do you show that a curve is always increasing?
23
Unit 1 revision Q 23 Solve for x x 3 – 2x 2 – 24x = 0
24
Unit 1 revision Q 24 Solve for x cos 2 x = 3 4 For 0 0 ≤ x 0 ≤ 360 0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.