Download presentation
Presentation is loading. Please wait.
Published byStuart Phillips Modified over 9 years ago
1
Near Infrared (NIR) Spectroscopy Instrumentation Paul Geladi
2
Paul Geladi Head of Research NIRCE Chairperson NIR Nord Unit of Biomass Technology and Chemistry Swedish University of Agricultural Sciences Umeå Technobothnia Vasa paul.geladi @ btk.slu.se paul.geladi @ uwasa.fi
4
Content Spectroscopy? Instrumentation Modes of measurement
5
Content Spectroscopy? Instrumentation Modes of measurement
6
Content Spectroscopy? Energy levels in atoms, molecules, crystals Example IR-NIR calculations Related techniques
7
Content Spectroscopy? Energy levels in atoms,molecules, crystals Example IR-NIR calculations Related techniques
8
Spectroscopy Interaction of radiation and matter Electromagnetic radiation Gases, liquids, solids, mixtures Heterogeneous materials
9
Electromagnetic radiation Cosmic Gamma Xray UV VIS NIR IR Micro Radio
10
Electromagnetic radiation Cosmic > 2500 KeV Gamma 10-2500 KeV Xray 0.1-100 KeV Ultraviolet 10-400 nm Visible 400-780 nm Near Infrared 780-2500 nm Infrared 2500-15000 nm Microwave GHz Radio MHz-KHz
11
Why interaction? Photon energy matches some energy level E = h E = hc/ Planck’s constant 6.63 10 -34
12
Some useful constants q e = 1.602176462*10 -19 As m e = 9.10938188*10 -31 Kg c = 2.99792458*10 8 m/s h = 6.62606876*10 -34 Js 1 Joule to Electronvolt 6.241506363094028*10 18
13
Units Joule (energy) Electron volt (KeV) Wavelength (nm, m, mm) Inverse cm (cm -1 ) Frequency (GHz,MHz,KHz)
14
Content Spectroscopy? Energy levels in atoms,molecules, crystals Example IR-NIR calculations Related techniques
15
HCl molecule (no true sizes) H Cl UV,VIS Xray UV,VIS NIR,IR Gamma ray = electron
16
Photon-matter interaction Atomic nucleus = gamma ray Inner electron = Xray Outer electron, chemical single bond = UV Chemical double, triple bond = UV,VIS Molecular vibration overtone = NIR Molecular vibration = IR Molecular rotation = Micro
17
E h Ground level First excited level Quantized energy levels
18
What can be measured? Emission Absorption Fluorescence
19
E h Ground level First excited level Emission Thermal
20
E h Ground level First excited level Absorption Thermal
21
E hh Ground level First excited level Fluorescence h out
22
Techniques? Gamma spectrometry Instrumental neutron activation analysis Xray spectrometry UV-VIS spectrometry (AES,AAS,ICP...) NIR spectrometry IR spectrometry Raman spectrometry Microwave spectrometry
23
What can be used? Intensity Energy Position Intensity, integral Width
24
Special topics Polarization Time resolved spectroscopy
25
Content Spectroscopy? Energy levels in atoms,molecules, crystals Example IR-NIR calculations Related techniques
26
Vibrational spectroscopy
27
Morse curves The Morse curve describes the potential energy V of a diatomic molecule as a function of interatomic distance x. V = De [1-exp(-bx)] 2
28
De = 5 b = 0.5
29
If the atoms go far apart the bond breaks. It is impossible to press the atoms close together. Enormous amounts of energy are needed.
30
De = 10 b = 0.4 Zero = equilibrium distance
31
Quantum levels = discrete F O1 O2 F Fundamental O1 First overtone O2 Second overtone
32
This was diatomic molecules Polyatomic molecules: M=3N-6 quantized vibration modes M=3N-5 linear molecules (N=1) N=3, M=3 H 2 O, H 2 S, SO 2 N=4, M=6 etc
33
Triatomic molecules G(a,b,c)=v 1 (a+1/2) + v 2 (b+1/2) + v 3 (c+1/2) Energy levels a=b=c=0 (0,0,0) a=1 b=c=0 (1,0,0) a=2 b=c=0 (2,0,0) a=0 b=1 c=0 etc (0,1,0)
34
ac b Combination band Overtone Ground level Hot band Fundamental (0,0,0) (1,0,0) (2,0,0) (0,1,0) (0,2,0) (0,0,1) (0,0,2)
35
Intensity Some transitions are more probable Gives more intense bands Fundamentals in Gas phase Overtones in liquid,solid Combination bands in liquid, solid
36
Hot bands Only exist because of thermal excitation Boltzmann Ne = No exp(- E/kT) Ne number excited, No number ground k Boltzmann constant 1.3806503*10 -23 J/K E energy difference
37
Why cm -1 ? Additive
38
S0 2 wavenumberband 519v2 606v1-v2 1151v1 1361v3 1871v2+v3 22962v1 2499v1+v3
39
Thermal radiation Planck’s law W( ) = c 1 -5 [exp(c 2 -1 T -1 )-1] T °K c1 = 1.91*10 -12 c2 = 1.438*10 4 m
40
mm Radiance 4000 K (Tungsten melts) 3500 K 3000 K 2500 K 2000 K
41
Planck curves More total energy for high temperature More UV for high temperature More flat curve for low temperature
42
Content Spectroscopy? Energy levels in atoms,molecules, crystals Example IR-NIR calculations Related techniques
43
Energy supply Photon Thermal Electron - Proton + Ion + -
44
Optics Electron optics Ion optics
45
Techniques Electron microscopy Electron spectroscopy Mass spectrometry Ion microscopy
46
Transmission Readout electronics Detector Sample cell Mono- chromator Radiation source
47
Transmission Readout electronics Detector Sample cell Mono- chromator Radiation source I0I0 ItIt
48
Lambert-Beer-Bouguer law Transmission Absorbance T = I t / I 0 A = log 10 ( I 0 / I t ) = -log 10 (I t / I 0 )
49
Lambert-Beer-Bouguer law A = klC l = path length k = constant C = concentration
50
Reflection Readout electronics Detector(s) Sample cell Mono- chromator Radiation source
51
Reflection Readout electronics Detector(s) Sample cell Mono- chromator Radiation source I0I0 IrIr
52
Lambert-Beer-Bouguer law Reflection Pseudoabsorbance R = I r / I 0 A* = -log 10 (I r / I 0 )
53
Content Spectroscopy? Instrumentation Modes of measurement
54
What can be changed? Radiation source Monochromator Sample cell Detector
55
Radiation source Tungsten-halogen lamp (Car type) Coated tungsten SiC Laser(s) LEDs LED arrays
56
ln(Wavelength), m ln(Energy flux) 3000K 1000K 0.21
57
Wavelength, m Energy flux 1000 1150 1300 1520 LEDs
58
What can be changed? Radiation source Monochromator Sample cell Detector
59
Monochromator ”Glass filter” Interference filters Prism Grating Interferometer Electrooptical
60
Monochromator ”Glass filter” not selective Interference filters Prism too primitive, never used Grating Interferometer Electrooptical
61
Interference filter Glass High RI coating Low RI coating Multiple reflections
62
Tilting interference filter Glass High RI coating Low RI coating Different pathlengths
63
There are also gradual interference filters Disk with increasing thickness Rotate for new wavelength bands
64
Filter wheel Readout electronics Detector(s) Sample cell Radiation source Filter wheel
65
Grating Mirror staircase Pathlength difference
66
Grating Polychromatic Monochromatic Rotate Entrance slit Exit slit
67
Interferometer Fixed mirror Moving mirror Semitransparant mirror (50%) Detector Sample
68
Interferometer Fixed mirror Moving mirror Semitransparant mirror (50%) Detector (interferogram) a b Wavelengths for which b-a = whole cycle reach detector
69
Interferometer Interferogram Fourier transform Spectrum
70
What can be changed? Radiation source Monochromator Sample cell Detector
72
Content Spectroscopy? Instrumentation Modes of measurement
73
This is a real strong point of NIR spectroscopy. There are many modes of measurement: Transmission Diffuse reflection Fiber optic based -Transflection -Interaction
74
Det Integrating sphere Det Fiberoptic Mirror
75
Transflectance probe Fiber bundleSapphire mirror
76
Mixed solutions Use tunable laser instead of monochromator (more lasers?) Use LED’s in different wavelengths instead of monochromator Use array of detectors instead of scanning monochromator DIODE ARRAY
77
Grating Polychromatic Entrance slit Diode array
78
Filter wheel instrument with interference filters
79
Interferometric instrument
81
Process NIR spectrometer based on moving grating
82
Transmision instrument
83
Sample changer for seeds (transmission)
84
Diffuse reflectance instrument (rotating cup)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.