Download presentation
Presentation is loading. Please wait.
Published byIrene Tracey Simpson Modified over 9 years ago
1
Flip-Flop Applications Registers
2
a register is a collection of flip-flops basic function is to hold information a shift register is a register that moves information on the clock signal serial-in/serial-out serial-in/parallel-out parallel-in/serial-out parallel-in/parallel-out
3
Serial-in, serial-out unidirectional shift register. Figure 6.26
4
Serial-in, parallel-out unidirectional shift register. Figure 6.27
5
Parallel-in unidirectional shift register. Figure 6.28
6
Universal shift register. (a) Logic diagram. (b) Mode control. (c) Symbol. Figure 6.29
7
Flip-Flop Applications Counters
8
Also called pattern generators Function: produce a specified output pattern sequence Types of counters Binary ripple counters (asynchronous counters) Synchronous counters
9
State diagram of a counter. Figure 6.30
10
Binary Ripple Counters also called asynchronous binary counters the LSB flip-flop recieves clock input from a clock source the i th flip-flop recieves clock input from output of the i th -1 flip-flop
11
Four-bit binary ripple counter. (a) Logic diagram. (b) Timing diagram. (c) Counting sequence. Figure 6.31
12
Synchronous Binary Counters Solve the settling time problem of the ripple counters Every flip-flop changes on clock input simultaneously Large number of flip-flops can cause loading complications
13
Four-bit synchronous binary counter. Figure 6.32
14
Four-bit synchronous binary counter variation. Figure 6.33
15
Four-bit synchronous binary counter with parallel load inputs. (a) Logic diagram. (b) Symbol. Figure 6.34
16
Synchronous mod-10 counter. (a) Connections. (b) Counting sequence. Figure 6.35
17
8-bit synchronous binary counter constructed from two 4-bit synchronous binary counters. Figure 6.36
18
Counters Based on Shift Registers Nonbinary counters a ring counter: a circular shift register where only one flip-flop is in 1-state and the rest are in 0-state a switch-tail counter (twisted-ring counter or Johnson counter): complement of the rightmost flip-flop becomes input of the leftmost flip-flop
19
Mod-4 ring counter. (a) Logic diagram. (b) Counting sequence. Figure 6.37
20
Mod-8 twisted-ring counter. (a) Logic diagram. (b) Counting sequence. Figure 6.38
21
Mod-7 twisted-ring counter. (a) Logic diagram. (b) Counting sequence. Figure 6.39
22
Synchronous Counter Design To design a synchronous counter, perform the following steps Decide the counting sequence Draw an excitation table, which consists of 3 parts Present state| Next state| flip-flop inputs (flip-flop inputs can be obtained from an application table of the selected flip-flop) Determine inputs of each flip-flop
23
General structure of a synchronous mod-6 counter using positive-edge-triggered JK flip-flops. Figure 6.40
24
Determination of the minimal-sum expressions for a synchronous mod-6 counter using clocked JK flip-flops. Figure 6.41
25
Logic diagram of a synchronous mod-6 counter. Figure 6.42
26
Determination of the minimal-sum expressions for a synchronous mod-6 counter using clocked D flip-flops. Figure 6.43
27
Determination of the minimal-sum expressions for a synchronous mod-6 counter using clocked T flip-flops. Figure 6.44
28
Determination of the minimal-sum expressions for a synchronous mod-6 counter using clocked SR flip-flops. Figure 6.45
29
Complete state diagram for the synchronous mod-6 counter of Fig. 6.42. Figure 6.46
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.