Download presentation
Presentation is loading. Please wait.
Published byAustin Taylor Modified over 9 years ago
1
MACHINE TRANSLATION AND MT TOOLS: GIZA++ AND MOSES -Nirdesh Chauhan
2
Outline Problem statement in SMT Translation models Using Giza++ and Moses
3
Introduction to SMT Given a sentence in foreign language F, find most appropriate translation in English E P(F|E) – Translation model P(E) – Language model
4
The Generation Process 4 Partition: Think of all possible partitions of the source language Lexicalization: For a give partition, translate each phrase into the foreign language Reordering: permute the set of all foreign words - words possibly moving across phrase boundaries We need the notion of alignment to better explain mathematic behind the generation process
5
Alignment
6
Word-based alignment For each word in source language, align words from target language that this word possibly produces Based on IBM models 1-5 Model 1 – simplest As we go from models 1 to 5, models get more complex but more realistic This is all that Giza++ does
7
Alignment A function from target position to source position: 7 The alignment sequence is: 2,3,4,5,6,6,6 Alignment function A: A(1) = 2, A(2) = 3.. A different alignment function will give the sequence:1,2,1,2,3,4,3,4 for A(1), A(2).. To allow spurious insertion, allow alignment with word 0 (NULL) No. of possible alignments: (I+1) J
8
IBM Model 1: Generative Process 8
9
IBM Model 1: Details No assumptions. Above formula is exact. Choosing length: P(J|E) = P(J|E,I) = P(J|I) = Choosing Alignment: all alignments equiprobable Translation Probability 9
10
Training Alignment Models 10 Given a parallel corpora, for each (F,E) learn the best alignment A and the component probabilities: t(f|e) for Model 1 lexicon probability P(f|e) and alignment probability P(a i |a i-1,I) How to compute these probabilities if all you have is a parallel corpora
11
Intuition : Interdependence of Probabilities 11 If you knew which words are probable translation of each other then you can guess which alignment is probable and which one is improbable If you were given alignments with probabilities then you can compute translation probabilities Looks like a chicken and egg problem EM algorithm comes to the rescue
12
Expectation Maximization (EM) Algorithm 12 Used when we want maximum likelihood estimate of the parameters of a model when the model depends on hidden variables -In present case, parameters are Translation Probabilities, and hidden Variables are alignment probabilities Init: Start with an arbitrary estimate of parameters E-step: compute the expected value of hidden variables M-Step: Recompute the parameters that maximize the likelihood of data given the expected value of the hidden variables from E-step
13
Example of EM Algorithm 13 Green house Casa verde The house La case Init: Assume that any word can generate any word with equal prob: P(la|house) = 1/3
14
E-Step 14 E-Step:
15
M-Step 15
16
E-Step again 16 1/32/3 1/3 Repeat till convergence
17
Limitation: Only 1->Many Alignments allowed 17
18
Phrase-based alignment More natural Many-to-one mappings allowed
19
Generating Bi-directional Alignments Existing models only generate uni-directional alignments Combine two uni-directional alignments to get many-to-many bi- directional alignments 19
20
Hindi-Eng Alignment छुट्टियोंकेलिएगोवा एक प्रमुखसमुद्र - तटीयगंतव्यहै Goa | is a | premier | beach vacation ||| destination || 20
21
Eng-Hindi Alignment छुट्टि यों केलिएगोवा एक प्रमुखसमुद्र - तटीयगंतव्यहै Goa | is a | premier | beach | vacation | destination | 21
22
Combining Alignments छुट्टि यों केलिएगोवा एक प्रमुख समुद्र - तटीय गंतव्यहै Goa + is a + premi er | | beach | vacati on || + destin ation | || 22 P=2/3=.67, R=2/7=.3 P=4/5=.8,R=4/7=.6 P=5/6=.83,R=5/7=.7 P=6/9=.67,R=6/7=.85
23
A Different Heuristic from Moses-Site 23 GROW-DIAG-FINAL(e2f,f2e): neighboring = ((-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)) alignment = intersect(e2f,f2e); GROW-DIAG(); FINAL(e2f); FINAL(f2e); GROW-DIAG(): iterate until no new points added for english word e = 0... en for foreign word f = 0... fn if ( e aligned with f ) for each neighboring point ( e-new, f-new ): if (( e-new, f-new ) in union( e2f, f2e ) and ( e-new not aligned and f-new not aligned )) add alignment point ( e-new, f-new ) FINAL(a): for english word e-new = 0... en for foreign word f-new = 0... fn if ( ( ( e-new, f-new ) in alignment a) and ( e-new not aligned or f-new not aligned ) ) add alignment point ( e-new, f-new ) Proposed Changes: After growing diagonal Align the shorter sentence first And use alignments only from corresponding directional alignment
24
Generating Phrase Alignments छुट्टि यों केलिएगोवा एक प्रमुख समुद्र - तटीय गंतव्यहै Goa + is a + premi er + beach + vacati on ++ + destin ation ++ 24 a premier beach vacation destination एक प्रमुख समुद्र - तटीय गंतव्यहै premier beach vacation प्रमुख समुद्र - तटीय
25
Using Moses and Giza++ Refer to http://www.statmt.org/moses_steps.htmlhttp://www.statmt.org/moses_steps.html
26
Steps Install all packages in Moses Input - sentence aligned parallel corpus Training Tuning Generate output on test corpus (decoding)
27
Example train.en h e l l o w o r l d c o m p o u n d w o r d h y p h e n a t e d o n e b o o m k w e e z l e b o t t e r train.pr hh eh l ow hh ah l ow w er l d k aa m p aw n d w er d hh ay f ah n ey t ih d ow eh n iy b uw m k w iy z l ah b aa t ah r
28
Sample from Phrase-table b o ||| b aa ||| (0) (1) ||| (0) (1) ||| 1 0.666667 1 0.181818 2.718 b ||| b ||| (0) ||| (0) ||| 1 1 1 1 2.718 c o m p o ||| aa m p ||| (2) (0,1) (1) (0) (1) ||| (1,3) (1,2,4) (0) ||| 1 0.0486111 1 0.154959 2.718 c ||| p ||| (0) ||| (0) ||| 1 1 1 1 2.718 d w ||| d w ||| (0) (1) ||| (0) (1) ||| 1 0.75 1 1 2.718 d ||| d ||| (0) ||| (0) ||| 1 1 1 1 2.718 e b ||| ah b ||| (0) (1) ||| (0) (1) ||| 1 1 1 0.6 2.718 e l l ||| ah l ||| (0) (1) (1) ||| (0) (1,2) ||| 1 1 0.5 0.5 2.718 e l l ||| eh l ||| (0) (0) (1) ||| (0,1) (2) ||| 1 0.111111 0.5 0.111111 2.718 e l ||| eh ||| (0) (0) ||| (0,1) ||| 1 0.111111 1 0.133333 2.718 e ||| ah ||| (0) ||| (0) ||| 1 1 0.666667 0.6 2.718 h e ||| hh ah ||| (0) (1) ||| (0) (1) ||| 1 1 1 0.6 2.718 h ||| hh ||| (0) ||| (0) ||| 1 1 1 1 2.718 l e b ||| l ah b ||| (0) (1) (2) ||| (0) (1) (2) ||| 1 1 1 0.5 2.718 l e ||| l ah ||| (0) (1) ||| (0) (1) ||| 1 1 1 0.5 2.718 l l o ||| l ow ||| (0) (0) (1) ||| (0,1) (2) ||| 0.5 1 1 0.227273 2.718 l l ||| l ||| (0) (0) ||| (0,1) ||| 0.25 1 1 0.833333 2.718 l o ||| l ow ||| (0) (1) ||| (0) (1) ||| 0.5 1 1 0.227273 2.718 l ||| l ||| (0) ||| (0) ||| 0.75 1 1 0.833333 2.718 m ||| m ||| (0) ||| (0) ||| 1 0.5 1 1 2.718 n d ||| n d ||| (0) (1) ||| (0) (1) ||| 1 1 1 1 2.718 n e ||| eh n iy ||| (1) (2) ||| () (0) (1) ||| 1 1 0.5 0.3 2.718 n e ||| n iy ||| (0) (1) ||| (0) (1) ||| 1 1 0.5 0.3 2.718 n ||| eh n ||| (1) ||| () (0) ||| 1 1 0.25 1 2.718 o o m ||| uw m ||| (0) (0) (1) ||| (0,1) (2) ||| 1 0.5 1 0.181818 2.718 o o ||| uw ||| (0) (0) ||| (0,1) ||| 1 1 1 0.181818 2.718 o ||| aa ||| (0) ||| (0) ||| 1 0.666667 0.2 0.181818 2.718 o ||| ow eh ||| (0) ||| (0) () ||| 1 1 0.2 0.272727 2.718 o ||| ow ||| (0) ||| (0) ||| 1 1 0.6 0.272727 2.718 w o r ||| w er ||| (0) (1) (1) ||| (0) (1,2) ||| 1 0.1875 1 0.424242 2.718 w ||| w ||| (0) ||| (0) ||| 1 0.75 1 1 2.718
29
Testing output h o t hh aa t p h o n e p|UNK hh ow eh n iy b o o k b uw k
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.