Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 4 1. Why “linked lists” 2 IndexWord A[0]BAT A[1]CAT A[2]EAT … A[n]WAT Insert “FAT” ? Or delete something.

Similar presentations


Presentation on theme: "Chapter 4 1. Why “linked lists” 2 IndexWord A[0]BAT A[1]CAT A[2]EAT … A[n]WAT Insert “FAT” ? Or delete something."— Presentation transcript:

1 Chapter 4 1

2 Why “linked lists” 2 IndexWord A[0]BAT A[1]CAT A[2]EAT … A[n]WAT Insert “FAT” ? Or delete something

3 Usual way to draw a linked list 3

4 Inserting into a linked list 4

5 Delete GAT 5

6 Defining a node in C++ class ThreeLetterNode { private: char data[3]; ThreeLetterNode * link; } 6

7 Example 4.1: The class definitions class NodeA { private: int data1; char data2; float data3; NodeA *linka; NodeB *linkb; }; class NodeB { private: int data; NodeB *link; }; 7

8 Designing a chain class in C++: Design attempt 1 Use a global variable first which is a pointer of ThreeLetterNode. Unable to access to private data members: data and link. ThreeLetterNode *first; first  data, first  link first  data[0], first  data[1], first  data[2] 8

9 Designing a chain class in C++: Design attempt 2 Make data members public or define public member functions GetLink(), SetLink() and GetData() Defeat the purpose of data encapsulation The ideal solution would only permit those functions that perform list manipulation operations (like inserting a node into or deleting a node from a chain) access to the data members of ThreeLetterNode 9

10 Designing a chain class in C++: Design attempt 3 Use of two classes. Create a class that represents the linked list. The class contains the items of another objects of another class. HAS-A A data object of type A HAS-A data object of type B if A conceptually contains B or B is a part of A. Eg. Computer HAS-A Processor, Book HAS-A Page 10

11 11 ThreeLetterChain Conceptual relationship between ThreeLetterChain and ThreeLetterNode Actual relationship between ThreeLetterChain and ThreeLetterNode

12 Program 4.1: Composite classes class ThreeLetterChain; // forward declaration class ThreeLetterNode { friend class ThreeLetterChain; private: char data[3]; ThreeLetterNode *link; }; class ThreeLetterChain { public: // Chain manipulation operations.. private: ThreeLetterNode *first; };}; 12

13 Program 4.2: Nested classes class ThreeLetterChain { public: // Chain Manipulation operations.. private: class ThreeLetterNode { // nested class public: char data[3]; ThreeLetterNode *link; }; ThreeLetterNode *first; };}; 13

14 Pointer manipulation in C++ Two pointer variables of the same type can be compared. Eg. x == y, x != y, x == 0 14 x = y*x = *y

15 Program 4.3: Creating a two-node list void Chain::Create2() { // create and set fields of second node ChainNode* second = new ChainNode(20,0); // create and set fields of first node first = new ChainNode(10,second); } 15

16 Program 4.4: Inserting a node void Chain::Insert50(ChainNode* x) { if ( first ) // insert after x x→link = new ChainNode(50, x→link); else // insert into empty list first = new ChainNode(50); } 16

17 Program 4.5: Deleting a node void Chain::Delete(ChainNode* x, ChainNode *y) { if(x = = first) first = first→link; else y→link = x→link; delete x; } 17 Example: Delete the second node Delete the first node Reference: J.L. Huang@NCTU

18 Program 4.6: Template definition of chains template class Chain; template class ChainNode { friend class Chain ; private: T data; ChainNode * link; }; template class Chain { public: Chain( ) {first = 0;} // initializing first to 0 // Chain manipulation operations.. private: ChainNode * first; } 18

19 Iterator An iterator is an object that is used to access the elements of a container class one by one 19 void main( ) { int x [3] = {0,1,2}; // use a pointer y to iterate the array x for (int* y = x; y != x+3; y + +) cout << *y << “ ”; cout << endl; }

20 Program 4.11: Inserting at the back of a list template void Chain ::InsertBack(const T& e) { if (first) { // nonempty chain last→link = new ChainNode (e); last = last→link; } else first = last = new ChainNode (e); } 20

21 Program 4.12: Concatenating two chains template void Chain ::Concatenate(Chain & b) { // b is concatenated to the end of *this if ( first ) { last→link = b. first; last = b.last; } else { first = b. first; last = b.last; } b. first = b.last = 0; } 21

22 Program 4.13: Reversing a list template void Chain ::Reverse() {// A chain is reversed so that (a 1, …, a n ) becomes (a n, …, a 1 ) ChainNode *current = first, *previous = 0; // previous trails current while (current) { ChainNode *r = previous; previous = current; // r trails previous current = current  link; // current moves to next node previous  link = r; // link previous to preceding node } first = previous; } 22

23 Circular lists 23 How to insert at the front of a circular list? Read Program 4.14

24 Linked stacks and queues 24 Read Program 4.19, 4.20, 4.21 and 4.22

25 Program 4.23: Polynomial class definition struct Term { int coef; int exp; Term Set(int c,int e) {coef = c; exp = e; return *this;}; }; class Polynomial { public: // public functions defined here private: Chain poly; }; 25

26 Polynomial representation 26 (a) 3x 14 +2x 8 +1(b) 8x 14 -3x 10 +10x 6

27 Adding polynomials: 3x 14 +2x 8 +1 and 8x 14 -3x 10 +10x 6 27

28 28

29 29

30 Equivalence classes For an arbitrary relation by the symbol  Reflexive x  x Symmetric If x  y, then y  x Transitive If x  y and y  z, then x  z A relation over a set, S, is said to be an equivalence relation over S if and only if it is symmetric, reflexive, and transitive over S. 30

31 Example 0  4, 3  1, 6  10, 8  9, 7  4, 6  8, 3  5, 2  11, 11  0 Three equivalent classes: {0,2,4,7,11}; {1,3,5}; {6,8,9,10} 31

32 Program 4.26: First version of equivalence algorithm void Equivalence() { initialize; while more pairs { input the next pair (i,j); process this pair; } initialize for output; for(each object not yet output) output the equivalence class that contains his object; } 32

33 Program 4.27: A more detail version of equivalence algorithm void Equivalence() { read n; initialize first[0:n-1] to 0 and out[0:n-1] to false; while more pairs { read the next pair (i, j); put j on the chain first[i]; put i on the chain first[j]; } for (i = 0; i < n; i++) if (!out[i]) { out[i] = true ; output the equivalence class that contains object i; } 33

34 Lists after pairs have been input 34 0  4, 3  1, 6  10, 8  9, 7  4, 6  8, 3  5, 2  11, 11  0

35 Program 4.28: C++ function to find equivalence classes class ENode { friend void Equivalence( ); public: ENode(int d = 0) {data = d; link = 0;} private: int data; ENode *link; }; 35

36 void Equivalence( ) {// input and output ifstream inFile( "equiv.in", ios::in); if (!inFile) throw “Cannot open input file.”; int i, j, n; inFile >> n; // read number of objects // initialize first and out ENode **first = new ENode* [n]; bool *out = new bool[n]; // use STL function fill to initialize fill (first, first + n, 0); fill (out, out + n, false); 36

37 // Phase 1: input equivalence pairs inFile >> i >> j; while (inFile.good()) { // check end of file first[i] = new ENode (j, first[i]) first[j] = new ENode (i, first[j]) inFile >> i >> j; } 37

38 // Phase 2: output equivalence classes for (i = 0; i < n; i++) if (!out[i]) { // needs to be output cout << endl << "A new class: " << i; out[i] = true; ENode *x = first[i]; ENode *top = 0; // initialize stack while (1) { //find rest of class while (x) { // process the list j = x  data; if (!out[j]) { cout << ", " << j; out[j] = true; ENode *y = x  link; x  link = top; top = x; x = y; } else x = x  link; } if (!top) break; x = first [top  data]; top = top  link; // unstack } // end of while(1) 38

39 } for (i = 0; i < n; i++) while (first[i]) { ENode *delnode = first[i]; first[i] = delnode  link; delete delnode; } delete [] first; delete [] out; } 39

40 Sparse matrices 40 1 0 4 Next nonzero row Next nonzero column

41 Example 41 Thus for an nxm sparse matrix with r nonzero terms, the number of nodes needed is max{n, m} + r + 1.

42 Program 4.29: Class definition for sparse matrices struct Triple{int row, col, value;}; class Matrix; class MatrixNode { friend class Matrix; friend istream& operator>>(istream&, Matrix&); private: MatrixNode *down, *right; bool head; union { MatrixNode *next; Triple triple; }; MatrixNode(bool, Triple*); // constructor } 42

43 MatrixNode::MatrixNode(bool b, Triple *t) // constructor { head = b; if (b) {right = down = this;} // row/column header node else triple = *t; // element node or header node for list of header nodes } class Matrix{ friend istream& operator>>(istream&, Matrix&); public: ~Matrix(); // destructor private: MatrixNode *headnode; }; 43

44 Doubly linked lists Move in forward and backward direction. How to get the preceding node during deletion or insertion? Using 2 pointers Node in doubly linked list left link field (left link) data field (item) right link field (right link) 44

45 Doubly linked circular list with header node 45 Empty doubly linked circular list with header node

46 Program 4.32: Class definition of a doubly linked list class DblList; class DblListNode { friend class DblList; private: int data; DblListNode *left, *right; }; class DblList { public: // List manipulation operations. private: DblListNode *first; // points to header node }; 46

47 Program 4.33: Deletion from a doubly linked circular list void DblList :: Delete(DblListNode *x) { if (x = = first) throw "Deletion of header node not permited"; else { x → left → right = x → right; //(1) x → right → left = x → left; //(2) delete x; } 47 Reference: J.L. Huang@NCTU

48 Program 4.34: Insertion into a doubly linked circular list void DblList :: Insert(DblListNode *p, DblListNode *x) { // insert node p to the right of node x p → left = x; //(1) p → right = x → right; //(2) x → right → left = p; //(3) x → right = p; //(4) } 48 Reference: J.L. Huang@NCTU


Download ppt "Chapter 4 1. Why “linked lists” 2 IndexWord A[0]BAT A[1]CAT A[2]EAT … A[n]WAT Insert “FAT” ? Or delete something."

Similar presentations


Ads by Google