Download presentation
Presentation is loading. Please wait.
Published byAnnabella Davidson Modified over 9 years ago
1
Patterns and Sequences
2
Patterns refer to usual types of procedures or rules that can be followed. Patterns are useful to predict what came before or what might come after a set a numbers that are arranged in a particular order. This arrangement of numbers is called a sequence. For example: 3,6,9,12 and 15 are numbers that form a pattern called a sequence The numbers that are in the sequence are called terms.
3
Patterns and Sequences Arithmetic sequence (arithmetic progression) – A sequence of numbers in which the difference between any two consecutive numbers or expressions is the same. Geometric sequence – A sequence of numbers in which each term is formed by multiplying the previous term by the same number or expression.
4
Arithmetic Sequence Find the next three numbers or terms in each pattern. Look for a pattern: usually a procedure or rule that uses the same number or expression each time to find the next term. The pattern is to add 5 to each term. The next three terms are:
5
Arithmetic Sequence Find the next three numbers or terms in each pattern. Look for a pattern: usually a procedure or rule that uses the same number or expression each time to find the next term. The pattern is to add the integer (-3) to each term. The next three terms are:
6
Geometric Sequence Find the next three numbers or terms in each pattern. Look for a pattern: usually a procedure or rule that uses the same number or expression each time to find the next term. The pattern is to multiply 3 to each term. The next three terms are:
7
Geometric Sequence Find the next three numbers or terms in each pattern. Look for a pattern: usually a procedure or rule that uses the same number or expression each time to find the next term. The pattern is to divide by 2 to each term. The next three terms are: Note: To divide by a number is the same as multiplying by its reciprocal. The pattern for a geometric sequence is represented as a multiplication pattern. For example: to divide by 2 is represented as the pattern multiply by ½.
8
Geometric Sequence Find the next three expressions or terms in each pattern. Look for a pattern: usually a procedure or rule that uses the same number or expression each time to find the next term. The pattern is to multiply by 2 to each term or expression. The next three terms are:
9
Arithmetic Sequence Find the next three expressions or terms in each pattern. Look for a pattern: usually a procedure or rule that uses the same number or expression each time to find the next term. The pattern is to add 2m+3 to each term or expression. The next three terms are:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.