Download presentation
Presentation is loading. Please wait.
Published byBridget Jackson Modified over 9 years ago
1
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics §2.3 Higher Order Derivatives
2
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §2.2 → Techniques of Differentiation Any QUESTIONS About HomeWork §2.2 → HW-8 2.2
3
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 3 Bruce Mayer, PE Chabot College Mathematics §2.3 Learning Goals Use the product and quotient rules to find derivatives Define and study the second derivative and higher-order derivatives
4
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 4 Bruce Mayer, PE Chabot College Mathematics Product INequality The Derivative Defintion (at right) is NONLinear Such That: In other words, the derivative of a product of functions does NOT EQUAL the Product of the individual Derivatives
5
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 5 Bruce Mayer, PE Chabot College Mathematics Example Product INequality Compute Similar-Looking Derivatives & Notice that the two expressions, 5x 4 & 6x 3, are NOT EQUAL
6
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 6 Bruce Mayer, PE Chabot College Mathematics Rule Roster – Product Rule If f(x) and g(x) are differentiable at x, then so is their product, f(x)·g(x), and Or in LaGrange Notation The Summary Statement: The 1 st times the Derivative of the 2 nd Plus the 2 nd times the Derivative of the 1 st
7
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 7 Bruce Mayer, PE Chabot College Mathematics ProductRule Proof Do On White Board
8
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 8 Bruce Mayer, PE Chabot College Mathematics Example Product Rule on Compute the Derivative of the Product: SOLUTION Let: f(x) = x 2 & g(x) = x 3 in the Product Rule so that:
9
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 9 Bruce Mayer, PE Chabot College Mathematics Example Product Rule on Or: This is the SAME as the correct answer in the Previous Example
10
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 10 Bruce Mayer, PE Chabot College Mathematics Example CellPhone Revenue A Smart Industrial Engineer at Apple © Develops a Model Math Function for the Demand for SmartPhones: Where –D ≡ Phone-Demand in k-Phones –p ≡ Phone-Price in $k
11
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 11 Bruce Mayer, PE Chabot College Mathematics Example CellPhone Revenue Use the IE’s Demand Model to Find At what rate is revenue changing With Respect To (W.R.T.) price when Selling phones at 0.2 $k ($200 per phone)? SOLUTION First construct a revenue function as the product of the price per phone and number of phones sold:
12
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 12 Bruce Mayer, PE Chabot College Mathematics Example CellPhone Revenue Subbing for D(p) find for R(p): Note that R has units of ($k/Ph)·(kPh) = $M –i.e.; R has units of MegaBucks Recall the RoC is simply the Derivative Find dR/dp using the product Rule
13
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 13 Bruce Mayer, PE Chabot College Mathematics Example CellPhone Revenue Engaging the Product Rule
14
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 14 Bruce Mayer, PE Chabot College Mathematics Example CellPhone Revenue Next determine the rate of change in revenue at a unit price of $200. In other words need to find dR/dp at a price of $0.2k
15
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 15 Bruce Mayer, PE Chabot College Mathematics Example CellPhone Revenue
16
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 16 Bruce Mayer, PE Chabot College Mathematics Example CellPhone Revenue The Calculation Shows Thus we can say that at a Selling Price of $0.2k per phone Revenue will DEcrease $4,000 for every $1 INcrease in the Phone Price
17
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 17 Bruce Mayer, PE Chabot College Mathematics Example CellPhone Revenue RoC (Sensitivity) is Tangent Line Slope
18
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 18 Bruce Mayer, PE Chabot College Mathematics Example CellPhone Revenue $0.1695k $1.2597M
19
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 19 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 05Jul13 % XYfcnGraph6x6BlueGreenBkGndTemplate1306.m % % The Limits xmin = 0; xmax = 0.3; ymin =0; ymax = 1.4; % The FUNCTION x = linspace(xmin,xmax,500); y1 = x.*(12-10*x-100*x.^2); y2 = -4*(x-.2) +1.2 % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y1, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}p ($k/Ph)'), ylabel('\fontsize{14}R ($M)'),... title(['\fontsize{16}MTH15 CellPh Revenue Sensitivity',]),... annotation('textbox',[.15.05.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraph6x6BlueGreenBkGndTemplate1306.m','FontSize',7) hold on plot(x,y2, '-- m', 0.2,1.2, 'd r', 'MarkerSize', 10,'MarkerFaceColor', 'r', 'LineWidth', 2) set(gca,'XTick',[xmin:.05:xmax]); set(gca,'YTick',[ymin:.2:ymax]) hold off % disp('showning first plot - HIT ANY KEY to continue') pause axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y1, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}p ($k/Ph)'), ylabel('\fontsize{14}R ($M)'),... title(['\fontsize{16}MTH15 CellPh Max Revenue',]),... annotation('textbox',[.15.05.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraph6x6BlueGreenBkGndTemplate1306.m','FontSize',7) hold on plot([0.1695,0.1695], [0,1.2597], '-- m', [0,0.1695], [1.2597,1.2597], '-- m', 'LineWidth', 2) set(gca,'XTick',[xmin:.05:xmax]); set(gca,'YTick',[ymin:.2:ymax]) % [C,I] = max(y1) x(I)
20
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 20 Bruce Mayer, PE Chabot College Mathematics Rule Roster – Quotient Rule If f(x) and g(x) are differentiable functions with g(x) ≠ 0, then In particular, the derivative of the quotient of f(x) and g(x) is NOT df/dx divided by dg/dx.
21
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 21 Bruce Mayer, PE Chabot College Mathematics QuotientRule Proof Do On White Board
22
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 22 Bruce Mayer, PE Chabot College Mathematics Example RoC in a Population One population model for deer on an island suggests that t years after initial observation, the population Where P is the fraction of the carrying capacity on the island. –e.g.; P(0) = 2/5 = 0.4, meaning 40% of the Island’s total carrying capacity Find, and Interpret the Meaning of:
23
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 23 Bruce Mayer, PE Chabot College Mathematics Example RoC in a Population SOLUTION The function’s formula is a ratio of expressions containing variables (and there’s no nice way to simplify the fraction), so use the quotient rule:
24
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 24 Bruce Mayer, PE Chabot College Mathematics Example RoC in a Population Simplifying: Now need to compute P’(1) and interpret the result
25
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 25 Bruce Mayer, PE Chabot College Mathematics Example RoC in a Population Units Analysis for dP/dt Thus the Interpretation of After 1 year the Deer population is growing at a rate of about 14.06% of the carrying capacity per year.
26
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 26 Bruce Mayer, PE Chabot College Mathematics Higher Order Derivatives Q) What is the Derivative of a Derivative? A) Just another Function Quick Example recalling that the 1 st Derivative is just the Slope, m The Derivative of the Slope is Called the “Curvature” or “Concavity”
27
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 27 Bruce Mayer, PE Chabot College Mathematics Higher Order Derivatives From the Previous Example Following the Derivation Sequence If we “fudge” and treat the differentials “d” and “dx” as algebraic quantities…
28
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 28 Bruce Mayer, PE Chabot College Mathematics Higher Order Derivatives Then Thus Conventionally (dx) 2 is written as dx 2 Thus if y = f(x) the 2 nd Derivative of y W.R.T. x:
29
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 29 Bruce Mayer, PE Chabot College Mathematics Higher Order Derivatives In general the conventional notation for the n th derivative of y W.R.T. x Some Examples
30
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 30 Bruce Mayer, PE Chabot College Mathematics Higher Order Derivatives Back to the Previous Example Then the 2 nd derivative Then the 3 rd derivative
31
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 31 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problem From §2.3 P54 → Profit Sensitivity With Respect to the Product Production Rate
32
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 32 Bruce Mayer, PE Chabot College Mathematics All Done for Today UNconventional Liebniz Notation
33
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 33 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics Appendix –
34
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 34 Bruce Mayer, PE Chabot College Mathematics
35
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 35 Bruce Mayer, PE Chabot College Mathematics
36
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 36 Bruce Mayer, PE Chabot College Mathematics
37
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 37 Bruce Mayer, PE Chabot College Mathematics
38
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 38 Bruce Mayer, PE Chabot College Mathematics
39
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 39 Bruce Mayer, PE Chabot College Mathematics
40
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 40 Bruce Mayer, PE Chabot College Mathematics
41
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 41 Bruce Mayer, PE Chabot College Mathematics
42
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 42 Bruce Mayer, PE Chabot College Mathematics
43
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 43 Bruce Mayer, PE Chabot College Mathematics
44
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 44 Bruce Mayer, PE Chabot College Mathematics
45
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 45 Bruce Mayer, PE Chabot College Mathematics
46
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 46 Bruce Mayer, PE Chabot College Mathematics
47
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 47 Bruce Mayer, PE Chabot College Mathematics
48
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 48 Bruce Mayer, PE Chabot College Mathematics
49
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 49 Bruce Mayer, PE Chabot College Mathematics Alternative Quotient Rule Restate Quotient as rational Exponent, then apply Product rule; to whit: Then Putting 2 nd term over common denom
50
BMayer@ChabotCollege.edu MTH15_Lec-08_sec_2-3_Higher_Order_Derivatives_.pptx 50 Bruce Mayer, PE Chabot College Mathematics
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.