Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fluid Mechanics 05.

Similar presentations


Presentation on theme: "Fluid Mechanics 05."โ€” Presentation transcript:

1 Fluid Mechanics 05

2 Rotating Flow In the rotating flow โˆ†l = โˆ†r and the acceleration will be only in the normal direction. โˆ’ ๐‘‘ ๐‘‘๐‘Ÿ ๐‘ƒ+ษฃ๐‘ง =ฯโˆ— โˆ’ ๐‘ฃ 2 ๐‘Ÿ Where ๐‘ฃ=๐‘คโˆ—๐‘Ÿ ๐‘‘ ๐‘‘๐‘Ÿ ๐‘ƒ+ษฃ๐‘ง =ฯโˆ— ๐‘ค 2 โˆ—๐‘Ÿ ๐‘ƒ+ษฃ๐‘งโˆ’ ฯโˆ— ๐‘ค 2 โˆ— ๐‘Ÿ 2 2 =Const

3 Example A cylindrical tank of liquid shown in the figure is rotating as a solid body at a rate of 4 rad/s. The tank diameter is 0.5 m. The line AA depicts the liquid surface before rotation, and the line Aโ€ฒ Aโ€ฒ shows the surface profile after rotation has been established. Find the elevation difference between the liquid at the center and the wall during rotation.

4

5 Solution ๐‘ƒ1+ษฃ1๐‘ง1โˆ’ ฯ1โˆ— ๐‘ค1 2 โˆ— ๐‘Ÿ1 2 2 =๐‘ƒ2+ษฃ๐‘ง2โˆ’ ฯ2โˆ— ๐‘ค2 2 โˆ— ๐‘Ÿ2 2 2
๐‘ƒ1+ษฃ1๐‘ง1โˆ’ ฯ1โˆ— ๐‘ค1 2 โˆ— ๐‘Ÿ =๐‘ƒ2+ษฃ๐‘ง2โˆ’ ฯ2โˆ— ๐‘ค2 2 โˆ— ๐‘Ÿ2 2 2 Where P1=P2=Patm=Zero gauge, r1=0, r2=0.25 m, w=4 rad/s, ฯ=1000Kg/m^3, g=9.81m/s^2 ๐‘ง2โˆ’๐‘ง1= ๐‘ค 2 โˆ— ๐‘Ÿ2 2 2โˆ—๐‘” = 4 2 โˆ— โˆ—9.81 =0.051๐‘š

6 Bernoulli Equation We apply Bernoulli equation of the tangent component of acceleration. โˆ’ ๐‘‘ ๐‘‘๐‘  ๐‘ƒ+ษฃ๐‘ง =ฯโˆ—๐‘Ž๐‘ก Where ๐‘Ž๐‘ก=๐‘ฃโˆ— ๐‘‘๐‘ฃ ๐‘‘๐‘  + ๐‘‘๐‘ฃ ๐‘‘๐‘ก Assume the flow is steady then ๐‘‘๐‘ฃ ๐‘‘๐‘ก =0 ๐‘กโ„Ž๐‘’๐‘› ๐‘Ž๐‘ก=๐‘ฃโˆ— ๐‘‘๐‘ฃ ๐‘‘๐‘  = ๐‘‘( ๐‘ฃ 2 2 ) ๐‘‘๐‘ 

7 โˆ’ ๐‘‘ ๐‘‘๐‘  ๐‘ƒ+ษฃ๐‘ง =ฯโˆ— ๐‘‘ ๐‘‘๐‘  ( ๐‘ฃ 2 2 ) ๐‘‘ ๐‘‘๐‘  ๐‘ƒ+ษฃ๐‘ง+ฯโˆ— ๐‘ฃ =0 ๐‘ƒ+ษฃ๐‘ง+ฯโˆ— ๐‘ฃ 2 2 =Const ๐‘ƒ ษฃ +๐‘ง+ ๐‘ฃ 2 2๐‘” =๐‘๐‘œ๐‘›๐‘ ๐‘ก

8

9 Example Piezometric tubes are tapped into a venturi section as shown in the figure. The liquid is incompressible. The upstream piezometric head is 1 m, and the piezometric head at the throat is 0.5 m. The velocity in the throat section is twice large as in the approach section. Find the velocity in the throat section.

10

11 Solution โ„Ž1+ ๐‘ฃ1 2 2โˆ—๐‘” =โ„Ž2+ ๐‘ฃ2 2 2โˆ—๐‘” Where v2=2*v1, h1=1m, h2=0.5m
โ„Ž1+ ๐‘ฃ1 2 2โˆ—๐‘” =โ„Ž2+ ๐‘ฃ2 2 2โˆ—๐‘” Where v2=2*v1, h1=1m, h2=0.5m 1+ ๐‘ฃ1 2 2โˆ—9.81 =0.5+ (2โˆ—๐‘ฃ1) 2 2โˆ—9.81 0.5= 3โˆ— ๐‘ฃ1 2 2โˆ—9.81 v1 = 1.808m/s , v2=3.62m/s

12 Example A open tank filled with water and drains through a port at the bottom of the tank. The elevation of the water in the tank is 10 m above the drain. The drain port is at atmospheric pressure. Find the velocity of the liquid in the drain port.

13 Solution ๐‘ƒ1 ษฃ +๐‘ง1+ฯโˆ— ๐‘ฃ1 2 2๐‘” = ๐‘ƒ2 ษฃ +๐‘ง2+ฯโˆ— ๐‘ฃ2 2 2๐‘”
๐‘ƒ1 ษฃ +๐‘ง1+ฯโˆ— ๐‘ฃ1 2 2๐‘” = ๐‘ƒ2 ษฃ +๐‘ง2+ฯโˆ— ๐‘ฃ2 2 2๐‘” Where P1=P2=Patm, v1=zero, z1-z2=10m 10=1000โˆ— ๐‘ฃ2 2 2โˆ—9.81 Then ๐‘ฃ2= 10โˆ—2โˆ—9.81 =14๐‘š/๐‘ 

14 Rate of flow Discharge (Volume flow rate):- General equation ๐‘„= ๐‘ฃโˆ—๐‘‘๐ด
Note that we take only the velocity component normal to the area. Laminar flow eqn ๐‘„=๐‘ฃ๐‘Ž๐‘ฃโˆ—๐ด Where vav is the average velocity

15 Mass flow rate ๐‘š . = ฯโˆ—๐‘ฃโˆ—๐‘‘๐ด For constant density across the flow ๐‘š . =ฯ ๐‘ฃโˆ—๐‘‘๐ด ๐‘š . =ฯโˆ—๐‘„

16 Example The water velocity in the channel shown in the accompanying figure has a distribution across the vertical section equal to u/umax = (y/d)1/2. What is the discharge in the channel if the water is 2 m deep (d = 2 m), the channel is 5 m wide, and the maximum velocity is 3 m/s?

17 Solution ๐‘ข=๐‘ข๐‘š๐‘Ž๐‘ฅโˆ— ( ๐‘ฆ ๐‘‘ ) 1/2 ๐‘„= ๐‘‰โˆ—๐‘‘๐ด
๐‘„= ๐‘‰โˆ—๐‘‘๐ด ๐‘„= ๐‘ข๐‘š๐‘Ž๐‘ฅโˆ— ( 1 ๐‘‘ ) 1/2 * ๐‘ฆ 1/2 โˆ— 5โˆ—๐‘‘๐‘ฆ ๐‘„= 3โˆ— โˆ—5โˆ— ๐‘ฆ โˆ—๐‘‘๐‘ฆ Q=10.606โˆ— ๐‘ฆ 1/2 โˆ—๐‘‘๐‘ฆ

18 Example Q=10.606โˆ— 2 3 โˆ—๐‘ฆ 3/2 Q=10.606โˆ— 2 3 โˆ— 2 3 2 =20 ๐‘š 3 ๐‘ 
A jet of water discharges into an open tank, and water leaves the tank through an orifice in the bottom at a rate of m3/s. If the cross-sectional area of the jet is m2 where the velocity of water is 7 m/s, at what rate is water accumulating in (or evacuating from) the tank?

19

20 Solution ๐‘„๐‘–๐‘›=๐ด1โˆ—๐‘ฃ1=0.0025โˆ—7=0.0175 ๐‘š 3 ๐‘  ๐‘„๐‘œ๐‘ข๐‘ก=0.003 ๐‘š 3 ๐‘ 
๐‘„๐‘–๐‘›=๐ด1โˆ—๐‘ฃ1=0.0025โˆ—7= ๐‘š 3 ๐‘  ๐‘„๐‘œ๐‘ข๐‘ก= ๐‘š 3 ๐‘  ๐‘„๐‘–๐‘›โˆ’๐‘„๐‘œ๐‘ข๐‘ก=0.0175โˆ’0.003= ๐‘š 3 ๐‘  ๐‘š . = ฯโˆ— ๐‘„๐‘–๐‘›โˆ’๐‘„๐‘œ๐‘ข๐‘ก =14.5 ๐พ๐‘” ๐‘ 

21 Example A 10 cm jet of water issues from a 1 m diameter tank. Assume that the velocity in the jet is 2๐‘”โ„Ž m/s where h is the elevation of the water surface above the outlet jet. How long will it take for the water surface in the tank to drop from h0 = 2 m to hf = 0.50 m?

22

23 Solution ๐‘„๐‘œ๐‘ข๐‘ก= ๐‘ฃโˆ—๐‘‘๐ด = ๐‘‘๐‘‰ ๐‘‘๐‘ก ๐‘‘๐‘ก= ๐‘‘๐‘‰ ๐‘„๐‘œ๐‘ข๐‘ก = ๐ด๐‘กโˆ—๐‘‘โ„Ž 2โˆ—๐‘”โˆ—โ„Ž โˆ—๐ด๐‘›
๐‘„๐‘œ๐‘ข๐‘ก= ๐‘ฃโˆ—๐‘‘๐ด = ๐‘‘๐‘‰ ๐‘‘๐‘ก ๐‘‘๐‘ก= ๐‘‘๐‘‰ ๐‘„๐‘œ๐‘ข๐‘ก = ๐ด๐‘กโˆ—๐‘‘โ„Ž 2โˆ—๐‘”โˆ—โ„Ž โˆ—๐ด๐‘› ๐ด๐‘ก= ฮ  4 โˆ— ๐ท๐‘ก 2 = ๐‘š 2 ๐ด๐‘›= ฮ  4 โˆ— ๐ท๐‘› 2 = ๐‘š 2 0 ๐‘ก ๐‘‘๐‘ก= ๐ด๐‘ก 2โˆ—๐‘” โˆ—๐ด๐‘› โˆ— โ„Ž0 โ„Ž ๐‘‘โ„Ž โ„Ž

24 ๐‘ก= 2โˆ—๐ด๐‘ก 2โˆ—๐‘” โˆ—๐ด๐‘› โˆ— โ„Ž0 โˆ’ โ„Ž ๐‘ก= 2โˆ— โˆ—9.81 โˆ— โˆ— 2 โˆ’ 0.5 t= 31.9 s

25 Example Water with a density of 1000 kg/m3 flows through a vertical venturimeter as shown. A pressure gage is connected across two taps in the pipe (station 1) and the throat (station 2). The area ratio Athroat/Apipe is 0.5. The velocity in the pipe is 10 m/s. Find the pressure difference recorded by the pressure gage.

26

27 Solution ๐‘„1=๐‘„2=๐ด1โˆ—๐‘ฃ1=๐ด2โˆ—๐‘ฃ2 ๐ด1 ๐ด2 = ๐‘ฃ2 ๐‘ฃ1 =2= ๐‘ฃ2 10 ๐‘ฃ2= 20๐‘š ๐‘ 
โ„Ž1+ ๐‘ฃ1 2 2โˆ—๐‘” =โ„Ž2+ ๐‘ฃ2 2 2โˆ—๐‘” โ„Ž1โˆ’โ„Ž2= ๐‘ฃ2 2 โˆ’ ๐‘ฃ1 2 2โˆ—๐‘” = โˆ’ โˆ—9.8 =15.3๐‘š ๐‘ƒ1โˆ’๐‘ƒ2=ฯโˆ—๐‘”โˆ— โ„Ž1โˆ’โ„Ž2 =150๐‘˜๐‘๐‘Ž

28 Rotation and Irrotation flow
Assume 2-D flow (x,y) ฮธ= ฮฒ 2 +ฮธ๐ด ฮฒ= ฮ  2 +ฮธ๐ตโˆ’ฮธ๐ด ฮธ= ฮ  4 + (ฮธ๐ด+ฮธ๐ต) 2

29 The rotational rate ฮธสน= (ฮธสน๐ด+ฮธสน๐ต) 2 If ฮธสน=0 the flow is irrotational. The rotational rate in terms of velocity. ฮฉ๐‘ฅ= 1 2 โˆ—( ๐‘‘๐‘ค ๐‘‘๐‘ฆ โˆ’ ๐‘‘๐‘ฃ ๐‘‘๐‘ง ) ฮฉ๐‘ฆ= 1 2 โˆ—( ๐‘‘๐‘ข ๐‘‘๐‘ง โˆ’ ๐‘‘๐‘ค ๐‘‘๐‘ฅ ) ฮฉ๐‘ง= 1 2 โˆ—( ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ โˆ’ ๐‘‘๐‘ข ๐‘‘๐‘ฆ ) Vorticity (w) w=2*ฮฉ


Download ppt "Fluid Mechanics 05."

Similar presentations


Ads by Google