Download presentation
1
Fluid Mechanics 05
2
Rotating Flow In the rotating flow โl = โr and the acceleration will be only in the normal direction. โ ๐ ๐๐ ๐+ษฃ๐ง =ฯโ โ ๐ฃ 2 ๐ Where ๐ฃ=๐คโ๐ ๐ ๐๐ ๐+ษฃ๐ง =ฯโ ๐ค 2 โ๐ ๐+ษฃ๐งโ ฯโ ๐ค 2 โ ๐ 2 2 =Const
3
Example A cylindrical tank of liquid shown in the figure is rotating as a solid body at a rate of 4 rad/s. The tank diameter is 0.5 m. The line AA depicts the liquid surface before rotation, and the line Aโฒ Aโฒ shows the surface profile after rotation has been established. Find the elevation difference between the liquid at the center and the wall during rotation.
5
Solution ๐1+ษฃ1๐ง1โ ฯ1โ ๐ค1 2 โ ๐1 2 2 =๐2+ษฃ๐ง2โ ฯ2โ ๐ค2 2 โ ๐2 2 2
๐1+ษฃ1๐ง1โ ฯ1โ ๐ค1 2 โ ๐ =๐2+ษฃ๐ง2โ ฯ2โ ๐ค2 2 โ ๐2 2 2 Where P1=P2=Patm=Zero gauge, r1=0, r2=0.25 m, w=4 rad/s, ฯ=1000Kg/m^3, g=9.81m/s^2 ๐ง2โ๐ง1= ๐ค 2 โ ๐2 2 2โ๐ = 4 2 โ โ9.81 =0.051๐
6
Bernoulli Equation We apply Bernoulli equation of the tangent component of acceleration. โ ๐ ๐๐ ๐+ษฃ๐ง =ฯโ๐๐ก Where ๐๐ก=๐ฃโ ๐๐ฃ ๐๐ + ๐๐ฃ ๐๐ก Assume the flow is steady then ๐๐ฃ ๐๐ก =0 ๐กโ๐๐ ๐๐ก=๐ฃโ ๐๐ฃ ๐๐ = ๐( ๐ฃ 2 2 ) ๐๐
7
โ ๐ ๐๐ ๐+ษฃ๐ง =ฯโ ๐ ๐๐ ( ๐ฃ 2 2 ) ๐ ๐๐ ๐+ษฃ๐ง+ฯโ ๐ฃ =0 ๐+ษฃ๐ง+ฯโ ๐ฃ 2 2 =Const ๐ ษฃ +๐ง+ ๐ฃ 2 2๐ =๐๐๐๐ ๐ก
9
Example Piezometric tubes are tapped into a venturi section as shown in the figure. The liquid is incompressible. The upstream piezometric head is 1 m, and the piezometric head at the throat is 0.5 m. The velocity in the throat section is twice large as in the approach section. Find the velocity in the throat section.
11
Solution โ1+ ๐ฃ1 2 2โ๐ =โ2+ ๐ฃ2 2 2โ๐ Where v2=2*v1, h1=1m, h2=0.5m
โ1+ ๐ฃ1 2 2โ๐ =โ2+ ๐ฃ2 2 2โ๐ Where v2=2*v1, h1=1m, h2=0.5m 1+ ๐ฃ1 2 2โ9.81 =0.5+ (2โ๐ฃ1) 2 2โ9.81 0.5= 3โ ๐ฃ1 2 2โ9.81 v1 = 1.808m/s , v2=3.62m/s
12
Example A open tank filled with water and drains through a port at the bottom of the tank. The elevation of the water in the tank is 10 m above the drain. The drain port is at atmospheric pressure. Find the velocity of the liquid in the drain port.
13
Solution ๐1 ษฃ +๐ง1+ฯโ ๐ฃ1 2 2๐ = ๐2 ษฃ +๐ง2+ฯโ ๐ฃ2 2 2๐
๐1 ษฃ +๐ง1+ฯโ ๐ฃ1 2 2๐ = ๐2 ษฃ +๐ง2+ฯโ ๐ฃ2 2 2๐ Where P1=P2=Patm, v1=zero, z1-z2=10m 10=1000โ ๐ฃ2 2 2โ9.81 Then ๐ฃ2= 10โ2โ9.81 =14๐/๐
14
Rate of flow Discharge (Volume flow rate):- General equation ๐= ๐ฃโ๐๐ด
Note that we take only the velocity component normal to the area. Laminar flow eqn ๐=๐ฃ๐๐ฃโ๐ด Where vav is the average velocity
15
Mass flow rate ๐ . = ฯโ๐ฃโ๐๐ด For constant density across the flow ๐ . =ฯ ๐ฃโ๐๐ด ๐ . =ฯโ๐
16
Example The water velocity in the channel shown in the accompanying figure has a distribution across the vertical section equal to u/umax = (y/d)1/2. What is the discharge in the channel if the water is 2 m deep (d = 2 m), the channel is 5 m wide, and the maximum velocity is 3 m/s?
17
Solution ๐ข=๐ข๐๐๐ฅโ ( ๐ฆ ๐ ) 1/2 ๐= ๐โ๐๐ด
๐= ๐โ๐๐ด ๐= ๐ข๐๐๐ฅโ ( 1 ๐ ) 1/2 * ๐ฆ 1/2 โ 5โ๐๐ฆ ๐= 3โ โ5โ ๐ฆ โ๐๐ฆ Q=10.606โ ๐ฆ 1/2 โ๐๐ฆ
18
Example Q=10.606โ 2 3 โ๐ฆ 3/2 Q=10.606โ 2 3 โ 2 3 2 =20 ๐ 3 ๐
A jet of water discharges into an open tank, and water leaves the tank through an orifice in the bottom at a rate of m3/s. If the cross-sectional area of the jet is m2 where the velocity of water is 7 m/s, at what rate is water accumulating in (or evacuating from) the tank?
20
Solution ๐๐๐=๐ด1โ๐ฃ1=0.0025โ7=0.0175 ๐ 3 ๐ ๐๐๐ข๐ก=0.003 ๐ 3 ๐
๐๐๐=๐ด1โ๐ฃ1=0.0025โ7= ๐ 3 ๐ ๐๐๐ข๐ก= ๐ 3 ๐ ๐๐๐โ๐๐๐ข๐ก=0.0175โ0.003= ๐ 3 ๐ ๐ . = ฯโ ๐๐๐โ๐๐๐ข๐ก =14.5 ๐พ๐ ๐
21
Example A 10 cm jet of water issues from a 1 m diameter tank. Assume that the velocity in the jet is 2๐โ m/s where h is the elevation of the water surface above the outlet jet. How long will it take for the water surface in the tank to drop from h0 = 2 m to hf = 0.50 m?
23
Solution ๐๐๐ข๐ก= ๐ฃโ๐๐ด = ๐๐ ๐๐ก ๐๐ก= ๐๐ ๐๐๐ข๐ก = ๐ด๐กโ๐โ 2โ๐โโ โ๐ด๐
๐๐๐ข๐ก= ๐ฃโ๐๐ด = ๐๐ ๐๐ก ๐๐ก= ๐๐ ๐๐๐ข๐ก = ๐ด๐กโ๐โ 2โ๐โโ โ๐ด๐ ๐ด๐ก= ฮ 4 โ ๐ท๐ก 2 = ๐ 2 ๐ด๐= ฮ 4 โ ๐ท๐ 2 = ๐ 2 0 ๐ก ๐๐ก= ๐ด๐ก 2โ๐ โ๐ด๐ โ โ0 โ ๐โ โ
24
๐ก= 2โ๐ด๐ก 2โ๐ โ๐ด๐ โ โ0 โ โ ๐ก= 2โ โ9.81 โ โ 2 โ 0.5 t= 31.9 s
25
Example Water with a density of 1000 kg/m3 flows through a vertical venturimeter as shown. A pressure gage is connected across two taps in the pipe (station 1) and the throat (station 2). The area ratio Athroat/Apipe is 0.5. The velocity in the pipe is 10 m/s. Find the pressure difference recorded by the pressure gage.
27
Solution ๐1=๐2=๐ด1โ๐ฃ1=๐ด2โ๐ฃ2 ๐ด1 ๐ด2 = ๐ฃ2 ๐ฃ1 =2= ๐ฃ2 10 ๐ฃ2= 20๐ ๐
โ1+ ๐ฃ1 2 2โ๐ =โ2+ ๐ฃ2 2 2โ๐ โ1โโ2= ๐ฃ2 2 โ ๐ฃ1 2 2โ๐ = โ โ9.8 =15.3๐ ๐1โ๐2=ฯโ๐โ โ1โโ2 =150๐๐๐
28
Rotation and Irrotation flow
Assume 2-D flow (x,y) ฮธ= ฮฒ 2 +ฮธ๐ด ฮฒ= ฮ 2 +ฮธ๐ตโฮธ๐ด ฮธ= ฮ 4 + (ฮธ๐ด+ฮธ๐ต) 2
29
The rotational rate ฮธสน= (ฮธสน๐ด+ฮธสน๐ต) 2 If ฮธสน=0 the flow is irrotational. The rotational rate in terms of velocity. ฮฉ๐ฅ= 1 2 โ( ๐๐ค ๐๐ฆ โ ๐๐ฃ ๐๐ง ) ฮฉ๐ฆ= 1 2 โ( ๐๐ข ๐๐ง โ ๐๐ค ๐๐ฅ ) ฮฉ๐ง= 1 2 โ( ๐๐ฃ ๐๐ฅ โ ๐๐ข ๐๐ฆ ) Vorticity (w) w=2*ฮฉ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.