Download presentation
Presentation is loading. Please wait.
Published byMarvin Stewart Modified over 9 years ago
1
Universality in low Reynolds number flows: theory and applications Peter Wittwer Département de Physique Théorique Université de Genève
2
reading: R. P. Feynman, Vol. II G. K. Batchelor, An Introduction to Fluid Mechanics L. Landau, E. Lifchitz, Mécanique des fluides M. Van Dyke, An Album of Fluid Motion collaborations: Guillaume Van Baalen Frédéric Haldi Sebastian Bönisch Vincent Heuveline
3
─ Introduction to the problem ─ Asymptotic analysis ─ Applications
4
Exterior Flows
5
Navier-Stokes
8
Re=0.16
9
Re=1.54
10
Re=56.5
11
Re=118
12
Re=7000
15
Case of finite volume
16
Case of infinite volume, I
17
Case of infinite volume, II
18
Asymptotic analysis
19
Results (d=2)
21
Interpretation:
23
Results (d=3)
25
Two steps: ─ construct downstream asymptotics dynamical system invariant manifold theory renormalization group universality ─ determines asymptotics everywhere
27
Vorticity:
28
Vorticity equation
30
Fourier transform
31
Diagonalize
32
Stable and unstable modes
34
use contraction mapping principle
35
Large time asymptotics:
36
Two steps: ─ construct downstream asymptotics dynamical system invariant manifold theory renormalization group universality ─ determines asymptotics everywhere
37
Determines asymptotics everywhere:
38
Applications in collaboration with: Sebastian Bönisch Rolf Rannacher Vincent Heuveline Heidelberg & Karlsruhe
39
Adaptive boundary conditions
43
To second order:
44
Comparison with Experiment:
45
Cloud Microphysics and Climate M. B. Baker, SCIENCE, Vol. 276, 1997
46
Work in progress: d=2 case with lift (numerical) d=2 second order asymptotics (theory) d=3 (numerical) d=2, 3: free fall problem (numerical) d=3 case with rotation at infinity (theory; see P. Galdi (2005) for recent results) Other research groups: d=2 time periodic (theory)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.