Presentation is loading. Please wait.

Presentation is loading. Please wait.

Universality in low Reynolds number flows: theory and applications Peter Wittwer Département de Physique Théorique Université de Genève.

Similar presentations


Presentation on theme: "Universality in low Reynolds number flows: theory and applications Peter Wittwer Département de Physique Théorique Université de Genève."— Presentation transcript:

1 Universality in low Reynolds number flows: theory and applications Peter Wittwer Département de Physique Théorique Université de Genève

2 reading: R. P. Feynman, Vol. II G. K. Batchelor, An Introduction to Fluid Mechanics L. Landau, E. Lifchitz, Mécanique des fluides M. Van Dyke, An Album of Fluid Motion collaborations: Guillaume Van Baalen Frédéric Haldi Sebastian Bönisch Vincent Heuveline

3 ─ Introduction to the problem ─ Asymptotic analysis ─ Applications

4 Exterior Flows

5 Navier-Stokes

6

7

8 Re=0.16

9 Re=1.54

10 Re=56.5

11 Re=118

12 Re=7000

13

14

15 Case of finite volume

16 Case of infinite volume, I

17 Case of infinite volume, II

18 Asymptotic analysis

19 Results (d=2)

20

21 Interpretation:

22

23 Results (d=3)

24

25 Two steps: ─ construct downstream asymptotics dynamical system invariant manifold theory renormalization group universality ─ determines asymptotics everywhere

26

27 Vorticity:

28 Vorticity equation

29

30 Fourier transform

31 Diagonalize

32 Stable and unstable modes

33

34 use contraction mapping principle

35 Large time asymptotics:

36 Two steps: ─ construct downstream asymptotics dynamical system invariant manifold theory renormalization group universality ─ determines asymptotics everywhere

37 Determines asymptotics everywhere:

38 Applications in collaboration with: Sebastian Bönisch Rolf Rannacher Vincent Heuveline Heidelberg & Karlsruhe

39 Adaptive boundary conditions

40

41

42

43 To second order:

44 Comparison with Experiment:

45 Cloud Microphysics and Climate M. B. Baker, SCIENCE, Vol. 276, 1997

46 Work in progress: d=2 case with lift (numerical) d=2 second order asymptotics (theory) d=3 (numerical) d=2, 3: free fall problem (numerical) d=3 case with rotation at infinity (theory; see P. Galdi (2005) for recent results) Other research groups: d=2 time periodic (theory)


Download ppt "Universality in low Reynolds number flows: theory and applications Peter Wittwer Département de Physique Théorique Université de Genève."

Similar presentations


Ads by Google