Download presentation
Presentation is loading. Please wait.
Published byCleopatra Johnston Modified over 9 years ago
1
La-Mediated Bond Activation, Coupling, and Cyclization of 1,3-butadiene Probed by Mass-Analyzed Threshold Ionization Spectroscopy Department of Chemistry University of Kentucky Dilrukshi Hewage, Ruchira Silva and Dong-Sheng Yang 1
2
Motivation Significant role in organic synthesis and catalysis Many kinetic studies in the gas phase, but very few spectroscopic measurements Identify structures and investigate reaction pathways Benchmark to test theoretical models and to design tailored catalyst 2
3
Background C-C bond strength ≈ 348 kJmol -1 C-H bond strength ≈ 418 kJmol -1 C-C bond activation Less common than C-H activation. Why? C-C bonds are less abundant than C-H bonds C-C bonds are highly directional. 3 Hinrichs, R. Z.; Schroden, J. J.; Davis, H. F. J. Phys. Chem. A 2008, 112, 3010 Siegbahn, P.E.M.; Blomberg, M.R.A. J. Am. Chem. Soc. 1992, 114, 10548
4
Previous Studies Cross molecular beam studies on M + C n H n have revealed the product distribution and their energy distribution Ex: Y + C 2 H 2 → YC 2 + Y-C 2 H Fast flow reactor methods have revealed the kinetics Theoretical studies on reaction pathways Glendening, E. D. Journal of Physical Chemistry A 2004, 108, 10165 Porembski, M.; Weisshaar, J. C. Journal of Physical Chemistry A 2001, 105, 6655 4
5
Spectroscopy Chamber Reaction Chamber ND:YAG(355 nm) ND:YAG (532 nm) Dye laser Frequency Doubling Electronics Diffusion Pump Turbo Pump Experimental Setup 5
6
6 Reaction chamber Spectroscopy chamber Piezo valve & Face plate Skimmer Diffusion pump Extraction Cans TOF MCP Turbo pump Micro motor Deflection plates
7
7 Extraction Cans TOF Tube MCP Detector Reaction Chamber Metal Rod Nozzle Laser(532 nm) Carrier Gas & Hydrocarbon Spectroscopy Chamber
8
8 Extraction Cans TOF Tube MCP Detector Source Chamber Spectroscopy Chamber UV ML + ML 320 V/cm
9
9 Extraction Cans TOF Tube MCP Detector Source Chamber UV MATI ions Promt ions MATI ions T=0 TOF spectrum Spectroscopy Chamber
10
Ion Neutral + UV laser 320 V/cm Rydberg states Extraction Can 1 ~ 5-20VDC 10
11
Theoretical Calculations DFT-B3LYP for geometry optimization and frequency calculation La ([Xe] 6s 2 5d 1 ) : SDD (Stuttgart/Dresden relativistic effective core potential) C and H : 6-311+G(d,p) Spectral simulation Franck-Condon factors and Boltzmann distribution 11
12
La+1,3-butadiene 12
13
TOF-MS of La+1,3-butadiene @ 225nm Time / us Relative intensity La LaO LaC 2 LaC 2 H 2 LaC 4 H 4 LaC 4 H 2 LaC 4 H 6 LaC 6 H 8 LaC 6 H 6 13
14
TOF-MS of La+1,3-butadiene @ 225nm LaC 2 H 2 LaC 4 H 4 LaC 4 H 6 LaC 6 H 8 LaC 6 H 6 14 Liu, Y.; Kumari, S.; Roudjane, M.; Li, S.; Yang, D.-S. Journal of Chemical Physics 2012, 136, 134310
15
PIE Spectra Wavenumber / cm -1 LaC 6 H 6 LaC 4 H 6 15
16
MATI of LaC 2 H 2 520 800 490 41163 16
17
Experimental & Simulated Spectra 520 / 528 800 / 832 490 / 471 800 / 814 IP= 41163 / 41908 1 A 1 ← 2 A 1, 200 K 17
18
LaC 4 H 6 Rel. Energy 0 3625 A B 18
19
Experimental MATI Spectrum & Simulation Wavenumber / cm -1 1 A' ← 2 A', 40178 1 A ← 2 A, 41730 39404 19
20
Wavenumber / cm -1 1 A' ← 2 A' @ 200K 400 370 320 285 470 24 (a) (b) (c) (a) (c) (b) 20 Experiment
21
Simulation 25 1 0 24 1 0 270/280 264/360 25 0 1 24 0 1 22 0 1 411/393 320/309500 24 0 1 25 0 1 24 0 2 22 0 1 24 0 1 IP / cm -1 39414 40036 1 A’ ← 2 A’ 21
22
Geometry NeutralIon LaC 1 2.512.44 LaC 2 2.672.62 C1C2C1C2 1.45 C2C3C2C3 1.39 < C 1 LaC 4 75 0 76 0 < LaC 1 H 1 130 0 128 0 < LaC 1 C 2 H 1 119 0 121 0 C3C3 C2C2 C1C1 C4C4 H1H1 H2H2 22
23
Geometry of the Complex Geometry parameter NeutralIon La-C 1 2.512.44 La-C 2 2.672.62 C1-C2C1-C2 1.45 C2-C3C2-C3 1.39 < C 1 LaC 4 75 0 76 0 < LaC 1 H 1 130 0 128 0 < LaC 1 C 2 H 1 119 0 121 0 23
24
Bonding of the Complex 24 C1C1 C2C2 C4C4 C3C3 C1C1 C2C2 C4C4 C3C3 C 1 -C 2 = C 3 -C 4 > C 2 -C 3 M-C 1 < M-C 2 C 1 -C 2 C 2 -C 3 La-C 1 La-C 2 1.451.392.512.67 Diamond, G. M.; Green, M. L. H.; Walker, N. M.; Howard, J. A. K.; Mason, S. A. J. Chem. Soc. Dalton Trans. 1992, 2641 C 1 -C 2 = C 3 -C 4 < C 2 -C 3 M-C 1 > M-C 2 C1C1 C2C2 C3C3 C4C4 σ 2, π metallacyclopentene π 2 model Bond lengths are in Å 1.34 1.46
25
25 A B ethylene C 2 H 4 + La(C 2 H 2 ) - H 2 → B propene C 3 H 6 + LaCH 2 - H 2 → A + B 1-butene La+C 4 H 8 - H 2 → A + B 1,3-butadiene La+C 4 H 6 → B
26
TOF of La+1,3-butadiene @ 225nm LaC 2 H 2 LaC 4 H 4 LaC 4 H 6 LaC 6 H 8 LaC 6 H 6 26
27
MATI Spectrum of LaC 6 H 6 Wavenumber / cm -1 27
28
MATI & ZEKE Spectra of La-Benzene Liu, Y.; Kumari, S.; Roudjane, M.; Li, S.; Yang, D.-S. Journal of Chemical Physics 2012, 136, 134310 ZEKE MATI 28
29
ZEKE and Simulation of LaC 6 H 6 Liu, Y.; Kumari, S.; Roudjane, M.; Li, S.; Yang, D.-S. Journal of Chemical Physics 2012, 136, 134310 29
30
La-Benzene E / cm -1 AIE41401 C-H wagging and in plane ring deformation of cation527 La + - benzene stretching295 Ring rocking39 30
31
~225 ~340 31
32
Summary LaC 2 H 2 LaC 4 H 4 LaC 4 H 6 LaC 6 H 8 LaC 6 H 6 32 Structures and electronic states of the products Experimental ionization energies and vibrational frequencies
33
Thank you 33
34
HOMO LaC 2 H 2 LaC 4 H 6 LaC 6 H 6 34
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.