Download presentation
Published byAnnabelle Cora Lucas Modified over 9 years ago
1
Refraction of Light Light changes direction (bends) as it crosses a boundary between 2 media in which the light moves at different speeds. Amount of refraction of light depends on properties of media (material type, temperature or density) and angle at which it hits the boundary.
2
Examples of Light Refraction
Pond or pool looks shallower than it actually is Straw or spoon in a glass appears bent White light comes out of prism as rainbow Air above hot stove seems to shimmer Stars twinkle
3
More on Refraction of Light
Light waves travel faster in air than in water and slower in glass than water. More dense = slower light When light enters a different medium, speed changes and it bends. Bending of light due to change in speed = REFRACTION
4
Common Indices of Refraction
Index of Refraction The index of refraction (n) of a medium is equal to the speed of light in a vacuum divided by the speed of light in the medium. n = c v In a vacuum, n is equal to 1. The larger n is, the slower light will travel through a substance. Common Indices of Refraction Medium n Vacuum 1.00 Air 1.0003 Water 1.33 Diamond 2.42
5
Snell’s Law of Refraction
Though you will not be required to work problems using this formula, it is important to know that you can calculate the incident or refracted angle of light mathematically using Snell’s Law of Refraction.
6
Journal # /7/12 WHAT IS THE SPEED OF LIGHT INA DIAMOND THAT HAS AN INDEX OF REFRACTION OF 2.42? THE PICTURE BELOW REPRESENTS LIGHT GOING FROM A (MORE OR LESS) DENSE MEDIUM TO A (MORE OR LESS) DENSE MEDIUM.
7
Critical Angle and Total Internal Reflection
When light passes from a substance with a higher index of refraction to a lower index of refraction (such as from water to air), an interesting phenomenon can occur. If the angle of incidence is increased too much, the incident light will bend so greatly that it cannot escape the substance. This phenomenon is called total internal reflection. The angle at which this happens is referred to as the critical angle.
8
Critical Angle and Total Internal Reflection
Figure a: Ray A is partially refracted and partially reflected. Figure b: Ray B is refracted along the boundary of the medium and forms the critical angle.
9
Critical Angle and Total Internal Reflection
Figure C: An angle of incidence greater than the critical angle results in the total internal reflection of Ray C, which follows the law of reflection.
10
Fiber Optics Fiber optics use total internal reflection.
Light is totally internally reflected over and over many times.
11
Advantages of Fiber Optic Technology
Used to get light to inaccessible places such as car engines, inside a patient’s body, and in communications transmitting telephone messages – replacing electrical circuits and microwave links in communication technology Can carry more info in high frequencies of visible light than in lower frequency electrical current Thin glass fibers replace bulky expensive copper cables – more practical in weight, size, cost
12
Journal # /8/12 Use the concave and convex Lenses on your table. Start with the Lens very close to your eye and slowly back it away. Describe the changes to your image until the mirror is a full arm’s length away.
13
Lenses A lens is made of transparent material, such as glass or plastic, with an index of refraction larger than that of air, causing light to bend (refract) as it passes through it. A lens has a curved surface on one or both sides.
14
Types of Lenses Plano-convex Plano-concave Double-convex
Double-concave
15
Convex vs. Concave lenses
A convex lens causes parallel light rays to eventually converge and a concave lens causes parallel light rays to eventually diverge.
16
Image is real, inverted, and reduced.
Convex Lens: Beyond 2F F 2F Check Line Image is real, inverted, and reduced.
17
Image is real, inverted, and same size.
Convex 2F F 2F Check Line Image is real, inverted, and same size.
18
Convex Lens: Between FP and 2F
Check Line Image is real, inverted, and enlarged.
19
Convex F 2F Check Line No image is formed.
20
Convex Lens: Between FP and Lens
Check Line The refracted light rays diverge. The image forms on the same side of the lens at the object. The image is virtual, upright, and enlarged.
21
F The Concave Lens The Concave Lens
Check Line Rays diverge after they hit the lens. Image will always be virtual, upright, and reduced.
22
Applications that Use Lenses
Hand lenses/Magnifying glasses Projectors Refracting telescopes Binoculars Cameras Microscopes Corrective Eyeglasses and Contact lenses
23
Nearsightedness Nearsightedness (Myopia) occurs when the eyeball is too long, so focal length is too short. Image forms in front of the retina; causes distant objects to be blurry. Corrected by a concave lens that forces light to diverge to a farther point on back of retina.
24
Farsightedness Farsightedness (Hyperopia) occurs when the eyeball is too short so focal length is too long, also happens with aging as muscles holding the shape of lens relax and allow it to flatten. Image forms behind wall of the retina; causes objects located close to the eye to become blurry. Corrected by convex lens that forces light to converge at a closer point on the back of retina.
25
Lens Chart Lens Type/ Placement of Object
Size of image compared to Object Real or Virtual Upright or Inverted Double Convex beyond 2F Double Convex at 2F Double Convex between 2F & F Double Convex at F Double Convex in front of F Double Concave (any placement)
26
Lens Chart Answers - Lens Type/ Placement of Object
Size of image compared to Object Real or Virtual Erect or Inverted Double Convex beyond 2F Smaller Real Inverted Double Convex @2F Same Size Double Convex between 2F & F Enlarged Double Convex @ F No Image Double Convex in front of F Virtual Upright Double Concave (any placement) Reduced
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.