Download presentation
Presentation is loading. Please wait.
Published byBlaze George Modified over 9 years ago
1
Matthias Wimmer, Bernd Radig, Michael Beetz Chair for Image Understanding Computer Science Technische Universität München matthias.wimmer@in.tum.de Adaptive Skin Color Classification
2
2005-12-18 2/10 Technische Universität München Matthias Wimmer Motivation Skin color detection supports… face model fitting mimic recognition person identification gaze estimation fatigue detection (e.g. vehicle) hand tracking gesture recognition action recognition supervising work challenge our approach results outlook
3
2005-12-18 3/10 Technische Universität München Matthias Wimmer Challenge Skin color depends on image conditions: illumination: light source, light color, shadow, shading,… camera: type, settings,… visible person: ethnic group, tan,… Skin color occupies a large area within color space challenge our approach results outlook
4
2005-12-18 4/10 Technische Universität München Matthias Wimmer Observations Skin color varies greatly between images. Skin color varies slightly within an image. Basic idea learn image specific skin color characteristics parameterize a skin color classifier accordingly skin color of image1 skin color of image2 challenge our approach results outlook
5
2005-12-18 5/10 Technische Universität München Matthias Wimmer Our approach Offline step: learn the skin color mask specific for any face detector Online steps: Step 1: detect the image specific skin color model using the face detector using the skin color mask Step 2: adapt a skin color classifier Step 3: calculate the skin color image challenge our approach results outlook
6
2005-12-18 6/10 Technische Universität München Matthias Wimmer Skin color model & skin color classifier detect the face extract the skin color pixels skin color model: mean values: μ r, μ g, μ base standard deviations: σ r, σ g, σ base adaptive skin color classifier: skin :=low r ≤ r ≤ high r low g ≤ g ≤ high g low base ≤ base ≤ high base learn the bounds low r := μ r – 2σ r high r := μ r + 2σ r... challenge our approach results outlook
7
2005-12-18 7/10 Technische Universität München Matthias Wimmer Results better results for colored persons exact shape outline detection of facial parts: eyes, lips, brows,… correctly detected pixels: non-adaptive approach:90.4%74.8%40.2% adaptive approach:97.5%87.5%97.0% improvement:7.9%17.0%141.3% challenge our approach results outlook
8
2005-12-18 8/10 Technische Universität München Matthias Wimmer Conclusion Challenge: much variation within skin color illumination, camera, visible person skin color occupies a large area within color space We propose a way to reduce those variations exploit an image specific skin color model adapt a skin color classifier to that skin color model We proved our approach using a simple but real-time capable skin color classifier comparison: non-adaptive ↔ adaptive challenge our approach results outlook
9
2005-12-18 9/10 Technische Universität München Matthias Wimmer Ongoing research Learn skin color mask for other face detectors Specialize more powerful skin color classifiers Recognize other feature images/color images lip color image tooth color image eye color image hair color image eye brow color image example: lip color detection challenge our approach results outlook
10
2005-12-18 10/10 Technische Universität München Matthias Wimmer Thank you !
11
2005-12-18 11/10 Technische Universität München Matthias Wimmer Overview Motivation / Challenge Our approach extracting skin color pixels adapt skin color classifier Results Conclusion Outlook
12
2005-12-18 12/10 Technische Universität München Matthias Wimmer Challenge (2): non-skin color pixels Skin color pixels have to be separated from non- skin color pixels. Areas of skin color and non-skin color overlap. Color can not make a distinctive separation. challenge our approach results outlook
13
2005-12-18 13/10 Technische Universität München Matthias Wimmer Basic idea learn image specific skin color characteristics parameterize classifier accordingly with those characteristics
14
2005-12-18 14/10 Technische Universität München Matthias Wimmer Offline: Learn the skin color mask face image database with labeled skin color pixels skin color mask: array with 24 x 24 cells Computational steps: detect the face in every image every cell is assigned the relative number of labeled skin color pixels at its position apply threshold 1. 2. 3. challenge our approach results outlook
15
2005-12-18 15/10 Technische Universität München Matthias Wimmer Step 1: Detect the image specific skin color model detect the face extract the skin color pixels normalized RGB color space: base= R + G + B r= R / base g= G / base skin color model: mean values: μ r, μ g, μ base standard deviations: σ r, σ g, σ base challenge our approach results outlook
16
2005-12-18 16/10 Technische Universität München Matthias Wimmer Step 2: Adapt a skin color classifier non-adaptive skin color classifier: skin :=0.35 ≤ r ≤ 0.5 0.2 ≤ g ≤ 0.7 200 ≤ base ≤ 740 adaptive skin color classifier: skin :=low r ≤ r ≤ high r low g ≤ g ≤ high g low base ≤ base ≤ high base learn the bounds via the skin color model mean value and standard deviation low r := μ r – 2σ r high r := μ r + 2σ r... linear function: low r := aμ r + bμ g + cμ base + dσ r + eσ g + fσ base + g... challenge our approach results outlook
17
2005-12-18 17/10 Technische Universität München Matthias Wimmer Adaptive skin color classifier non adaptive skin color classifier: skin := 0.35 ≤ r ≤ 0.5 0.2 ≤ g ≤ 0.7 200 ≤ base ≤ 740 adaptive skin color classifier: skin := low r ≤ r ≤ high r low g ≤ g ≤ high g low base ≤ base ≤ high base learn the bounds out of the skin color model
18
2005-12-18 18/10 Technische Universität München Matthias Wimmer Related work Feedback of information from high level vision components to low level vision components challenge our approach results outlook
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.