Download presentation
1
DEFINITION OF A PARABOLA
Standard 4, 9, 17 PARABOLAS DEFINITION OF A PARABOLA PARTS OF A PARABOLA SUMMARY OF FORMULAS PROBLEM 1 PROBLEM 2 PROBLEM 3 PROBLEM 4 PROBLEM 5 PROBLEM 6 PROBLEM 7 PROBLEM 8 END SHOW PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
2
ALGEBRA II STANDARDS THIS LESSON AIMS:
Students factor polynomials representing the difference of squares, perfect square trinomials, and the sum and difference of two cubes ESTÁNDAR 4: Los estudiantes factorizan polinomios representando diferencia de cuadrados, trinomios cuadrados perfectos, y la suma de diferencia de cubos. STANDARD 9: Students demonstrate and explain the effect that changing a coefficient has on the graph of quadratic functions; that is, students can determine how the graph of a parabola changes as a, b, and c vary in the equation y = a(x-b) + c. ESTÁNDAR 9: Los estudiantes demuestran y explican los efectos que tiene el cambiar coeficientes en la gráfica de funciones cuadráticas; esto es, los estudiantes determinan como la gráfica de una parabola cambia con a, b, y c variando en la ecuación y=a(x-b) + c STANDARD 17: Given a quadratic equation of the form ax + by + cx + dy + e = 0, students can use the method for completing the square to put the equation into standard form and can recognize whether the graph of the equation is a circle, ellipse, parabola, or hyperbola. Students can then graph the equation. Estándar 17: Dada una equación cuadrática de la forma ax +by + cx + dy + e=0, los estudiantes pueden usar el método de completar al cuadrado para poner la ecuación en forma estándar y pueden reconocer si la gráfica es un círculo, elipse, parábola o hiperbola. Los estudiantes pueden graficar la ecuación 2 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
3
DEFINITION OF A PARABOLA:
Standard 4, 9, 17 DEFINITION OF A PARABOLA: A parabola is the set of all points in a plane that are the same distance from a given point called the focus and a given line called directrix. x y focus directrix PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
4
Standard 4, 9, 17 PARTS OF A PARABOLA: y axis of symmetry latus rectum
focus vertex directrix PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
5
PARABOLAS: SUMMARY Form of equation y = a(x-h) + k x = a(y-k) + h
Standard 4, 9, 17 PARABOLAS: SUMMARY Form of equation y = a(x-h) + k x = a(y-k) + h Axis of symmetry x= h y = k Vertex (h,k) Focus (h, k ) (h + , k) Directrix y = k - x = h - Direction of openning Upward if a>0 Downward if a<0 Right if a>0 Left if a<0 Length of latus rectum units 2 2 1 4a 1 4a 1 4a 1 4a 1 a 1 a PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
6
Standard 4, 9, 17 (h, k + ) y = a(x-h) + k y = k -
Find the vertex, axis of symmetry, focus, directrix and Latus rectum from and graph it. y= (x+5) + 2 2 1 6 (h, k ) 1 4a =( -5, ) 1 4 Focus: 1 6 y= (x+5) + 2 2 1 6 1 4 6 =( -5, ) Rewriting the equation: 4 6 1 = 2 3 1 = y= (x- -5) + (+2) 2 1 6 1 4 6 = 3 2 3 2 =( -5, ) y = a(x-h) + k 2 3 1 2 =( -5, ) 2+ 3 2 = 4 2 3 + 2 y = k - 1 4a h= -5 Directrix: = 7 2 k= 2 y = 2 - 1 4( ) a= 1 6 3 1 6 7 2 3 1 2 6 Vertex: (h,k) = (-5, 2) 3 2 1 y = 2 - Axis of symmetry: x= -5 y = 1 2 2 - 3 2 = 4 2 3 - 2 1 6 = = 1 2 1 1 a =6 Latus rectum: 1 6 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
7
Summarizing the information about the parabola and graphing it:
Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: x= -5 4 2 6 -2 -4 -6 8 10 -8 -10 x y Vertex: (-5, 2) Axis of symmetry: x= -5 Focus: ( -5, ) 3 1 2 y = 1 2 Directrix: y = 1 2 Latus rectum = 6 a>0 so it opens upward. PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
8
Standard 4, 9, 17 (h, k + ) y = a(x-h) + k y = k -
Find the vertex, axis of symmetry, focus, directrix and Latus rectum from and graph it. y= (x+6) + 3 2 1 8 (h, k ) 1 4a =( -6, ) 1 4 Focus: 1 8 - y= (x+6) + 3 2 1 8 1 4 8 - =( -6, ) 4 8 1 = - 1 2 = - Rewriting the equation: 1 4 8 - = 2 1 - + y= (x- -6) + (+3) 2 1 8 =( -6, ) -2 y = a(x-h) + k 2 = -2 =( -6, ) 2 y = k - 1 4a =( -6, ) 1 h= -6 Directrix: k= 3 y = 3 - 1 4( ) a= - 1 8 1 8 - Vertex: (h,k) = (-6, 3) y = 3 - (-2) Axis of symmetry: x= -6 y = 3 + 2 y = 5 1 8 = - 1 1 a =8 Latus rectum: 1 8 - PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
9
Summarizing the information about the parabola and graphing it:
Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: y 8 4 12 -4 -8 -12 16 20 -16 -20 x Vertex: (-6, 3) x=- 6 Axis of symmetry: x= -6 y= 5 Focus: ( -6, 1) Directrix: y = 5 Latus rectum =8 a<0 so it opens downward PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
10
Standard 4, 9, 17 x = a(y-k) + h (h + , k) x = h - x = a(y-k) + h
Write 4x= y -4y + 8 in the form and graph it. x = a(y-k) + h 2 Changing the form of the equation: Vertex: (h,k) = (1, 2) 4x = y -4y + 8 2 Axis of symmetry: y= 2 4 2 (h , k) 1 4a =( , 2) 1 4 Focus: 4x = (y -4y )+ 8 - 2 1 4 (2) 2 4x = (y - 4y )+ 8 - 2 1 4 = ( , 2) 4x =(y -4y )+ 8 - 2 4 (4) 4x = (y -2) + 4 2 = ( , 2) 1 =(2,2) x = h - 1 4a Directrix: x= (y-2) + 2 1 4 x = 1 - 1 4 1 4 x= (y-2) + 1 2 1 4 x = 1 - 1 Rewriting the equation: h= 1 1 4 = x= (y- +2) + (+1) 2 1 4 x= 0 k= 2 1 x = a(y-k) + h 2 a= 1 4 =4 1 a 1 4 Latus rectum: PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
11
Summarizing the information about the parabola and graphing it:
Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: directrix 2 1 3 -1 -2 -3 4 5 -4 -5 x y Vertex: (1,2) latus rectum Axis of symmetry: y= 2 axis of symmetry focus Focus: (2,2) vertex Directrix: x =0 Latus rectum = 4 a>0 so it opens rightward. PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
12
Standard 4, 9, 17 x = a(y-k) + h (h + , k) x = h - x = a(y-k) + h
Write 4x= y -6y + 3 in the form and graph it. x = a(y-k) + h 2 Vertex: (h,k) = ( , 3) 3 2 - Changing the form of the equation: 4x = y -6y + 3 2 Axis of symmetry: y= 3 6 2 (h , k) 1 4a =( , 3) 1 4 3 2 - Focus: 4x = (y -6y )+ 3 - 2 1 4 (3) 2 = ( , 3) 3 2 - 1 4 4x = (y - 6y )+ 3 - 2 3 2 - 1 + 2 3 2 - = + 4x =(y -6y )+ 3 - 2 9 (9) = - 1 2 =( , 3) 3 2 - 1 4x = (y -3) - 6 2 1 2 - x = h - 1 4a =( ,3) x= (y-3) - 2 1 4 6 Directrix: x = 1 4 3 2 - x= (y-3) - 2 1 4 3 1 4 x = 1 3 2 - 2 Rewriting the equation: h= 3 2 - 1 4 = x= (y- +3) + ( ) 2 1 4 3 - x= 3 2 - = - 5 2 k= 3 1 x = a(y-k) + h 2 a= 1 4 =4 1 a 1 4 Latus rectum: PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
13
Summarizing the information about the parabola and graphing it: x = -
Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: x = - 5 2 Vertex: (h,k) = ( , 3) 3 2 - 2 1 3 -1 -2 -3 4 5 -4 -5 x y Axis of symmetry: y= 3 y= 3 Focus: ( ,3) 1 2 - Directrix: x = - 5 2 Latus rectum = 4 a>0 so it opens rightward. 1 2 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
14
Standard 4, 9, 17 y = a(x-h) + k (h, k + ) y = k - y = a(x-h) + k
Write y= 4x + 24x + 16 in the form and graph it. y = a(x-h) + k 2 Changing the form of the equation: Vertex: (h,k) = (-3,-20) y = 4x + 24x + 16 2 Axis of symmetry: x= -3 6 2 y = 4(x + 6x ) 2 (h, k ) 1 4a =(-3, ) 1 4( ) Focus: 4 (3) 2 y = 4(x + 6x ) 2 =(-3, ) 1 16 y = 4(x + 6x ) 2 9 (9) =(-3, ) -19 15 16 y = 4(x + 3) 2 y = k - 1 4a Directrix: y = 4(x + 3) - 20 2 y = -20- 1 4( ) Rewriting the equation: 4 y = -20 - 1 16 y = 4(x - -3) + (-20) 2 y = a(x-h) + k 2 y = -20 1 16 h= -3 a>0 so it opens upward. k= -20 1 a 1 4 Latus rectum: =.25 a= 4 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
15
Summarizing the information about the parabola and graphing it:
Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: 2 1 3 -1 -2 -3 -21 -18 -15 4 5 -4 -5 -12 -9 x y -6 -24 -27 Vertex: (-3,-20) axis of symmetry Axis of symmetry: x= -3 Focus: (-3, ) -19 15 16 Directrix: y = -20 1 16 Latus rectum = .25 a>0 so it opens upward. latus rectum focus -20 vertex directrix PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
16
Standard 4, 9, 17 The coordinates of the focus and equation of the directrix of a parabola are as follows. Write an equation for the parabola and graph it. (-3, -2); y = -6 Since the directrix is a horizontal line the parabola is a vertical parabola. And the following applies: If focus formula is (h, k ) 1 4a then If directrix formula is y = k - 1 4a then h = -3 and k + 1 4a = -2 k - 1 4a = -6 Equation 1 1 4a + Solving both equations by substitution: = -2 1 4a -6 + 1 4a k = - 6 + 1 4a Equation 2 = -2 2 4a Substituting a in equation 2: 2 = 16a 4 8 1 k = -6 + 1 4 = -6 + 1 4 8 = -6 + 1 8 . 2 = 4 2 4a a = 2 16 (4a) k = -6 + 8 4 = 2 = 16a a = 1 8 k = -4 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
17
Summarizing information about the parabola:
Standard 4, 9, 17 Summarizing information about the parabola: h= -3 So the equation is: k= -4 a= 1 8 y= (x- -3) + (-4) 2 1 8 Vertex: (-3,-4) y = (x+3) - 4 2 1 8 Axis of symmetry is x = -3 Focus: (-3, -2) 4 2 6 -2 -4 -6 8 10 -8 -10 x y 1 8 = Directrix: y = -6 x=- 3 1 =8 1 a 1 8 Latus rectum: y= -6 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
18
Standard 4, 9, 17 Find the equation of the parabola shown in the graph. 2 1 3 -1 -2 -3 4 5 -4 -5 x y We know that the graph pass through point (x,y)=(-2,3). We use this point to substitute it on the equation to find a: x= (y-1) -3 2 a ( )= (( )-1) -3 2 a -2 3 -2 = a(3-1) - 3 2 -2 = a(2) - 3 2 -2 = a(4) - 3 -2 = 4a - 3 From the graph: Vertex = (-3,1) 1 = 4a This is a horizontal parabola so: 4 4 x = a(y-k) + h 2 Now we substitute in the parabola’s equation: a = 1 4 x= (y- ) + ( ) 2 a +1 -3 x= (y-1) - 3 2 1 4 x= (y-1) -3 2 a PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
19
Standard 4, 9, 17 Find the equation of the parabola shown in the graph. 2 1 3 -1 -2 -3 4 5 -4 -5 x y We know that the graph pass through point (x,y)=(0,-3). We use this point to substitute it on the equation to find a: y= (x-2) -4 2 a ( )= (( )-2) -4 2 a -3 -3 = a(0-2) - 4 2 -3 = a(-2) - 4 2 -3 = a(4) - 4 -3 = 4a - 4 From the graph: Vertex = (2,-4) 1 = 4a This is a vertical parabola so: 4 4 y = a(x-h) + k 2 Now we substitute in the parabola’s equation: a = 1 4 y= (x- ) + ( ) 2 a +2 -4 y= (x-2) - 4 2 1 4 y= (x-2) -4 2 a PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.