Download presentation
Presentation is loading. Please wait.
Published byMarcus Hall Modified over 9 years ago
1
מבנה מחשב תרגול 2 מונים
2
Counters
3
תירגול 2 - מבנה מחשב3 Edge Triggering Important Issue: The T Flip-Flop and the JK Flip-Flop 1-1 option are not stable since they are “toggle” operations. From now all FFs are assumed down edge- triggered: Values are changed not when the clock is up, but at the exact moment the clock goes down – notice the circle notation Edge Triggering mechanism can be seen in the lecture.
4
תירגול 2 - מבנה מחשב4 New Approach To Flip-Flops (1) Formerly, we presented each flip-flop’s Truth Table, i.e. the output as a function of former state (former output) and the inputs. 000 110 101 011 Former State InputOutput T Flip-Flop Example
5
תירגול 2 - מבנה מחשב5 New Approach To Flip-Flops (2) A new Approach: For each former output and desired output combination, what inputs do we need to transform from current to desired? This approach is more useful when creating counters.
6
תירגול 2 - מבנה מחשב6 New Approach To Flip-Flops (3)
7
תירגול 2 - מבנה מחשב7 Flip-Flop Concatenation T Flip-Flop has an interesting Attribute: 1 1 1010 1010 1010 (In red, is the clock down-edge)
8
תירגול 2 - מבנה מחשב8 Flip-Flop Concatenation (2) But doesn’t that resemble counting in binary? 000 100 010 110 001 101 011 111
9
תירגול 2 - מבנה מחשב9 Asynchronic Counter So we can use this attribute to create a simple n-digit binary counter. (shown here with the equivalent 1-1 state JK Flip-Flop)
10
תירגול 2 - מבנה מחשב10 BCD Counter Can we count in a radix which is not ? Yes, we can even create a binary-coded decimal (BCD) Counter:
11
תירגול 2 - מבנה מחשב11 BCD Counter (2) To create it we used the diagram:
12
תירגול 2 - מבנה מחשב12 BCD Counter Concatenation If we can count to 10 (exclusive) we can count to 100, 1000 and so on…
13
תירגול 2 - מבנה מחשב13 BCD Counter Two problems: Developing a custom-made, efficient, asynchronic counter, such as the BCD counter is difficult! What if we want to create a non-consecutive counter easily?
14
תירגול 2 - מבנה מחשב14 Counting Sequence A cyclic sequence of binary numbers. For instance: 0,1,2,4,5,6,0,1,2,4,…
15
תירגול 2 - מבנה מחשב15 Synchronic Counter We want to implement a mechanism for counting in a given counting sequence. We’ll focus independently on each digit and the changes it undergoes.
16
תירגול 2 - מבנה מחשב16 Building A Sync. Counter Algorithm: Choose a Flip-Flop type to use. To each digit (column), allocate a Flip-flop. For each digit (column) create a truth table in the following manner: For each state (line) do: Mark state in current line as Mark state in next line as Determine the desired FF’s inputs by the tables. Those inputs are actually function results in the truth table. Simplify the truth table and implement the function
17
תירגול 2 - מבנה מחשב17 3-Bit Sync. Counter using T Flip-Flops (2)
18
תירגול 2 - מבנה מחשב18 3-Bit Sync. Counter using T Flip-Flops (1)
19
תירגול 2 - מבנה מחשב19 3-Bit Sync. Counter using T Flip-Flops (3)
20
תירגול 2 - מבנה מחשב20 3-Bit Sync. Counter using T Flip-Flops (3)
21
תירגול 2 - מבנה מחשב21 3-Bit Sync. Counter using T Flip-Flops (4)
22
תירגול 2 - מבנה מחשב22 Example using JK Flip-Flops (2) Shown for the 0,1,2,4,5,6,0,1,2,4,5,6,… example We’ll do C as an example.
23
תירגול 2 - מבנה מחשב23 Example using JK Flip-Flops (1)
24
תירגול 2 - מבנה מחשב24 Example using JK Flip-Flops (3) JC: KC: 0XX1 0XX1 0 1 00011110 XX1X XX1X 0 1 00011110
25
תירגול 2 - מבנה מחשב25 Example using JK Flip-Flops (4)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.