Download presentation
Presentation is loading. Please wait.
Published byJames Webb Modified over 9 years ago
1
CHAPTER 8 Fourier Filters IMAGE ANALYSIS A. Dermanis
2
Continuous and discrete Fourier transform in two dimensions f(x,y) = F(u,v) e i 2 (ux+vy) dxdy – –– – + ++ + Continuous inverse Fourier transform F(u,v) = f(x,y) e –i 2 (ux+vy) dxdy – –– – + ++ + Continuous Fourier transform f(x,y) F(u,v) F uv = f nm e NM –i 2 ( + ) un vm N M n=1 m=1 N M 1 Discrete Fourier transform f ij F uv Discrete inverse Fourier transform f nm = F uv e i 2 ( + ) un vm N M u=1 v=1 N M A. Dermanis
3
{g ij } = {h ij } {f ij } G uv = H uv F uv G(u) = F(u) H(u) g ij = h i–n,j–m f nm = h nm f i–n,j–m n = – m = – + n = – m = – + Discrete convolution theorem Continuous convolution theorem g(x) = h( – x) f( ) d f(x) h(x) –– ++ f(x) F( ) g(x) G( ) h(x) H( ) f ij F uv g ij G uv h ij H uv A. Dermanis
4
{g ij }{G uv } G uv = H uv F uv { F uv } Discrete convolution theorem DFT convolution inverse DFT multiplication {f ij } g ij = h i–n,j–m f nm n = – m = – + A. Dermanis
5
Circular Filters Low Pass High Pass 1 1 1 1 0 0 A. Dermanis
6
OriginalFourier transform After circular low-pass filter, R = 100After circular low-pass filter, R = 75After circular low-pass filter, R = 50 After circular high-pass filter, R = 50 An example of Fourier filtering with circular filters A. Dermanis
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.