Download presentation
1
Quantum Dots in Photonic Structures
Lecture 8: Semiconducotor Quantum dots Jan Suffczyński cqd.eecs.northwestern.edu Wednesdays, 17.00, SDT Projekt Fizyka Plus nr POKL /11 współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki
2
Ordering in self-organized
Plan for today Reminder 2. Excitons in semiconductor quantum dots 3. Ordering in self-organized Quantum Dot system
3
Holes Consider an insulator (or semiconductor) with a few electrons excited from the valence band into the conduction band “Deficiency” of negative charge can be treated as a positive charge Negative curvature of the band negative hole effective mass
4
Semiconductor Quantum Well
5
Semiconductor Quantum Well
6
Semiconductor Quantum Well
Confinement potential
7
Quantum Confinement in Nanostructures
1 Direction: Quantum well (thin film) Two-dimensional excitons 2 Directions: Quantum wire One-dimensional excitons 3 Directions: Quantum dot Zero-dimensional excitons Each confinement direction converts a continuous k in a discrete quantum number n. kx ky nz kx nz ny ny nz nx
8
Density of states Structure Degree of Confinement Bulk Material 0D
Quantum Well 1D 1 Quantum Wire 2D Quantum Dot 3D d(E)
9
Confined levels in Quantum Wells
Energy of confined levels GaAs/AlGaAs Quantum Well Decrease of the level energy when width of the Quantum Well decreased R. Dingle, Festkorperprobleme’1975
10
Confined levels in Quantum Dots
Photoluminescence of GaAs/GaAlAs Quantum Dots QD as an artificial atom B. Piętka et al.
11
QD types and fabrication methods
Goal: to engineer potential energy barriers to confine electrons in 3 dimensions Basic types/methods Colloidal chemistry Electrostatic Lithography Epitaxy Fluctuation Self-organized Patterned growth - „Defect” QDs
12
Photoluminescence spectra of GaN template on sapphire
GaN grown on direction, CEA Valbonne An evidence for narrow, discrete emission lines!
13
„Defect” type quantum dots
14
„Defect” type quantum dots
HRTEM, S. Kret, IF PAN
15
Cubic GaN vs wurtzite GaN
Structure Zinc blende Wurtzite Lattice constant at 300 K 0.450 nm a0 = nm c0 = nm Energy Gap at ~0 K 3.30 eV Ramirez-Flores et al.,1994, Ploog et al., 1995 3.50 eV Dingle et al., 1971 Monemar 1974 Energy of emission (~ eV) agrees resonably with an expectation for cubic GaN inclusions in wurtzite GaN
16
Self-organized Semiconductor QDs
Number of atoms ~ C. H. Li et al, APL’2005
17
Epitaxy: Self-Organized Growth
Lattice-mismatch induced island growth Self-organized QDs through epitaxial growth strains Stranski-Krastanov growth mode (use MBE, MOCVD) Islands formed on wetting layer due to lattice mismatch (size ~10s nm) Disadvantage: size and shape fluctuations, strain, Control island initiation Induce local strain, grow on dislocation, vary growth conditions, combine with patterning
18
Semiconductor Quantum Dot
Klimeck et al.
19
QD confined electron wavefunctions
Klimeck et al.
20
InGaAs self-assembled QDs
Calculated confined eh-pair energies for InAs assuming pyramidal shape Grundmann, Bimberg et al., TU Berlin
21
CdTe QDs qrowth – amorfous Te deposition method
J. Kobak et al. GaAs:Si substrate F. Tinjod et al., APL (2003)
22
CdTe QDs qrowth – amorfous Te deposition method
J. Kobak et al. ZnTe buffer 1000 nm GaAs:Si substrate F. Tinjod et al., APL (2003)
23
CdTe QDs qrowth – amorfous Te method
ZnTe buffer 1000 nm GaAs:Si substrate CdTe layer F. Tinjod et al., APL (2003)
24
CdTe QDs qrowth – amorfous Te deposition method
J. Kobak et al. amorphous Te ZnTe buffer 1000 nm GaAs:Si substrate CdTe layer F. Tinjod et al., APL (2003)
25
CdTe QDs qrowth – amorfous Te deposition method
J. Kobak et al. amorphous Te QDs ZnTe buffer 1000 nm GaAs:Si substrate F. Tinjod et al., APL (2003)
26
CdTe QDs qrowth – amorfous Te deposition method
J. Kobak et al. QDs ZnTe buffer 1000 nm GaAs:Si substrate F. Tinjod et al., APL (2003)
27
CdTe QDs qrowth – amorfous Te deposition method
J. Kobak et al. ZnTe cap 100 nm ZnTe buffer 1000 nm GaAs:Si substrate F. Tinjod et al., APL (2003)
28
Control of CdTe/ZnTe QD density with the temperature of CdTe deposition
PL intensity µPL 6 K 0 – 2 QDs 15 – 30 QDs 30 – 60 QDs 300 – 600 QDs 3 ML Czas nakładania stały różna temperatura nakładania 80 – 160 QDs 500 – 1000 QDs Photon Energy (meV) J. Kobak et al., arXiv: (2012)
29
Control of CdTe/ZnTe QD density with the thickness of CdTe layer
PL intensity T=334 oC µPL 6 K 1 ML 10 – 20 QDs 2 ML 100 – 200 QDs 3 ML 300 – 600 QDs 4 ML 500 – 1000 QDs Photon Energy (meV) J. Kobak et al., arXiv: (2012)
30
Control of CdTe/ZnTe QD density with the thickness of CdTe layer
31
Epitaxy: Patterned Growth
Growth on patterned substrates Grow QDs in pyramid-shaped recesses Recesses formed by selective ion etching Disadvantage: density of QDs limited by mask pattern T. Fukui et al. GaAs tetrahedral quantum dot structures fabricated using selective area metal organic chemical vapor deposition. Appl. Phys. Lett. May, 1991
32
Excitons in Semiconductor Quantum Dots
33
Exciton formation The absorption of photon by an interband transition in a semiconductor or insulator creates an electron in the conduction band and hole in the valence band. Eg
34
Exciton formation This oppositely charged particles attract each other though Coulomb interaction, and there may be the probability of the formation of neutral electron-hole pair called an Exciton.
35
Exciton formation Wannier-Mott excitons Frenkel exciton
A striking resemblance with the hydrogen atom is already evident at first sight; the role of the proton is played here by the hole. If we regard the electron and hole as point charges characterized by their charge and effective masses (the so-called effective mass approximation), we can apply a modified Bohr model of the hydrogen atom. We shall see that this illustrative approximation can explain the majority of the principal features observed in the optical spectra of Wannier excitons in semiconductors
36
Exciton – Bohr model Wannier-Mott excitons
Moddified Bohr model of the hydrogen atom applies reduced mass binding energy dielectric constant
37
Exciton binding Energy
Ry(H) = 13.6 eV Binding Energy of electron in Hydrogen atom Exciton compared to hydrogen atom: larger ratio of the effective masses electron and hole are in medium with dielectric constant ranging between 10-30, Smaller exciton binding energy Unlike the pair of a light electron and a very heavy proton, the exciton is composed of two light quasi-particles with comparable masses me mh which entails a lower stability of the exciton in comparison with the hydrogen atom For stability of Excitons binding energy must be higher than ∼ kBT
38
Exciton Bohr Diameter - bulk
The same size dot of different material may not assure quantum confinement
39
Oscillator strength of the exciton recombination confined in QD
J. Hours, P. Senellart, E. Peter, A. Cavanna, and J. Bloch, PHYSICAL REVIEW B (R)2005
40
Oscillator strength of the exciton recombination confined in QD
41
How to observe excitons in Semiconductor Quantum Dots?
42
Spectroscopy of individual Quantum Dots
Towards detector Laser beam Microscope objective Sample with QDs
43
Experimental setup Laser beam
44
Spatial resolution <1m)
Microscope objective Spatial resolution <1m) J. Jasny and J. Sepioł, Chem. Phys. Lett. 273,
45
QD exciton emission QDs ensamble emission
Individual QD emission spectrum
46
Excitonic transitions in a quantum dot
Exciton (X) X X:
47
Excitonic transitions in a quantum dot
Biexciton (XX) XX XX:
48
Excitonic transitions in a quantum dot
Charged exciton (X+ or X-) CX CX:
49
X Xdark X Neutral exciton X Formed by: heavy hole and electron
Jz = ±3/2 Jz = ±1/2 4 possible spin states of X Xdark X Jz = -1 Jz = +1 Jz = -2 Jz = +2
50
Fine structure of neutral exciton
( + )/ 2 X δ1~0.1meV ( – )/ 2 X Anisotropic exchange δ0~1meV Isotropic exchange ( + )/ 2 δ2 ≈0 Xdark ( – )/ 2
51
QD anisotropy AES Energy ~ XX AES V H AES X V H empty dot
52
Fine structure of neutral exciton
Anisotropic exchange splitting: AES = 182 6eV
53
Excitonic states in magnetic field
B = 0 - + B > 0, B||z ~gXBB XX H V X AES H V empty dot
54
Evolution of -PL spectrum in magnetic field
55
Is dark exciton emission possible?
T. Smoleński et al. Spin flip to bright state due to fonon absorption? δ0 fonon Decay of X Double exponential decay of X log(PL) X Spin flip induced decay of Xdark At low temperatures small probability ~ exp(-δ0/kT) of spin flip due to phonon absorption Time
56
However, emission of Xdark possible at magnetic field!
T. Smoleński et al. B Magnetic field in the plane of the sample induces mixing of bright and dark excitonic states 2X X- X+ Xdark X
57
Identification of excitonic transitions
PL intensity vs excitation power measurement of anisotropic exchange splitting + correlation measurements
58
Ordering in self-organized
Quantum Dot system
59
Coupled Quantum Dots G. J. Beirne et al., Phys. Rev. Lett. 96, (2006) B.D.Gerardot et al., Phys. Rev. Lett. 95, (2005)
60
Spontaneous ordering in self-organized
Quantum Dot system orientation shape size distribution
61
Spontaneous ordering in self-organized
Quantum Dot system P. Wojnar, IF PAN
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.