Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to Nanomechanics (Spring 2012) Martino Poggio.

Similar presentations


Presentation on theme: "Introduction to Nanomechanics (Spring 2012) Martino Poggio."— Presentation transcript:

1 Introduction to Nanomechanics (Spring 2012) Martino Poggio

2 Preliminary Logistics and Introduction Course outline and expectations; What is nanomechanics? Why study nanomechanics?

3 People Course Leader/Lectures: – Martino Poggio Teaching Assistants/Exercise Sessions: – Michele Montinaro – Fei Xue – Gunter Wüst – Jonathan Prechtel 21.02.20123Introduction to Nanomechanics

4 Format and requirements Language: English Prerequisites: Physics III; course-work in solid- state physics and statistical mechanics Lectures: 10-12 on Tues. (21.02-29.05.2012) Exercise Sessions: 13-14 on Wed. Assignments: exercises and reading of current papers Final paper: 4-5 page report on significant experimental paper due on 29.06.2012 Grading: Pass/fail Introduction to Nanomechanics421.02.2012

5 Literature Foundations of Nanomechanics, A. N. Cleland (Springer, 2003) Fundamentals of Statistical and Thermal Physics, F. Reif (McGraw-Hill, 1965) Original papers from Nature, Science, Physical Review Letters, Applied Physics Letters, Review of Scientific Instruments, Physics Today, etc. Introduction to Nanomechanics521.02.2012

6 Website http://poggiolab.unibas.ch/NanoMechSpring2012.htm Overview Format and Requirements Schedule – Lecture content – Exercise session Documents (PDF) – Optional reading Documents (PDF) 6Introduction to Nanomechanics21.02.2012

7 http://poggiolab.unibas.ch/NanoMechSpring2012.htm 21.02.2012Introduction to Nanomechanics7

8 http://poggiolab.unibas.ch/NanoMechSpring2012.htm 21.02.2012Introduction to Nanomechanics8

9 What is nanomechanics? Well… it’s the study of the mechanical properties of very very small things A nanometer is 10 -9 meters 1 nm = 0.000000001 m 100,000 nm ≈ diameter of a human hair 1 nm ≈ diameter of 10 atoms 9Introduction to Nanomechanics21.02.2012

10 Red blood cell 10  m DNA 2.5 nm H atom 50 pm Visible light 0.4 - 0.8  m Proton 1.75 fm Matterhorn 1.0 km Size scales 21.02.2012Introduction to Nanomechanics10 mmmfm 10 3 m10 9 m10 -15 m10 6 m pm 10 -12 m nm 10 -9 m MmkmkmGm mm 10 -6 m10 -3 m10 0 m BIG small The sun 1.4 Gm 1.2 Mm Basel Lecce Average man 1.75 m Dog flea 2 mm

11 (Macro)mechanics 11 mmmfm 10 3 m10 9 m10 -15 m10 6 m pm 10 -12 m nm 10 -9 m MmkmkmGm mm 10 -6 m10 -3 m10 0 m Introduction to Nanomechanics21.02.2012 Nanomechanics

12 How is nanomechanics different than (macro)mechanics? Thermal fluctuations significantly affect the motion of small bodies Quantum mechanical fluctuations affect the motion of even smaller bodies 12Introduction to Nanomechanics21.02.2012

13 Brownian motion 13 Fat droplets suspended in milk through a 40x objective. The droplets are 0.5 - 3.0  m in size. Introduction to Nanomechanics21.02.2012

14 Thermal energy 14 Particle mass Boltzmann constant Temperature Mean square velocity Introduction to Nanomechanics21.02.2012

15 Brownian motion 15 Viscosity of medium Mean square displacement (a measure of the size of the fluctuations) Particle radius Elapsed time Introduction to Nanomechanics21.02.2012

16 Cantilever 16 x F Spring constant Introduction to Nanomechanics21.02.2012

17 Cantilever 17 x F Mean square displacement Introduction to Nanomechanics21.02.2012

18 1 st mode 18Introduction to Nanomechanics21.02.2012

19 (Macro)mechanics 19 L = 2 m w = 100 mm t = 50 mm E SS = 200 GPa k = 78 k  m x th = 0.2 pm for T = 300 K Introduction to Nanomechanics21.02.2012

20 L = 120  m w = 3  m t = 100 nm E Si = 169 GPa Nanomechanics 20 k = 73  m x th = 8 nm for T = 300 K Introduction to Nanomechanics21.02.2012

21 Quantum fluctuations 21 Zero point fluctuations Planck constant Resonant frequency Mass Introduction to Nanomechanics21.02.2012

22 (Macro)mechanics 22 l = 2 m w = 100 mm t = 50 mm E SS = 200 Gpa  = 7.85 g/cm 3 k = 78 k  m x ZPF = 0.2 am x ZPF = 0.2 x 10 -18 m m = 20 kg Introduction to Nanomechanics21.02.2012

23 L = 120  m w = 3  m t = 100 nm E Si = 169 Gpa  = 2.3 g/cm 3 Nanomechanics 23 k = 73  m m = 20 pg x ZPF = 0.2 pm x ZPF = 0.2 x 10 -12 m Introduction to Nanomechanics21.02.2012

24 Carbon nanotube 24 m = 10 -21 kg  = 2  x 500 MHz x ZPF = 4 pm x ZPF = 4 x 10 -12 m Introduction to Nanomechanics21.02.2012

25 Quantum fluctuations of a drum 25 Lehnert, 2011 Introduction to Nanomechanics21.02.2012

26 Why study nanomechanics? Link between classical mechanics and statistical mechanics Link between classical mechanics and quantum mechanics Smaller sensors are more sensitive 26Introduction to Nanomechanics21.02.2012

27 What is nanomechanics good for? Smaller sensors are more sensitive! – Measurement of displacement – Measurement of mass – Measurement of force – Measurement of charge – Measurement of magnetic moment 27Introduction to Nanomechanics21.02.2012

28 Atomic force microscopy (AFM) 28 10 nm Giessibl, 2000 Si (111) (AFM) Folks, 2000 Magnetic Bits (MFM) 10  m DNA (AFM) Hamon, 2007 500 nm Introduction to Nanomechanics21.02.2012

29 Scanning tunneling microscopy (STM) 29 Eigler, 1993 Introduction to Nanomechanics21.02.2012

30 Quantum effects 30 Schwab et al., 2000 Decca, 2003 Quantum of Thermal ConductanceCasimir Force Measurement Introduction to Nanomechanics21.02.2012

31 Weighing a single atom 31 Zettl, 2008

32 Measuring a single electron spin 32 Rugar, 2004 Introduction to Nanomechanics21.02.2012

33 33 Nano-magnetic resonance imaging (nanoMRI) 50 nm Degen, 2009 Introduction to Nanomechanics21.02.2012

34 Cantilever Basics (statics) 34Introduction to Nanomechanics21.02.2012


Download ppt "Introduction to Nanomechanics (Spring 2012) Martino Poggio."

Similar presentations


Ads by Google