Download presentation
Presentation is loading. Please wait.
Published byRonald Johnson Modified over 9 years ago
1
TODAY IN ALGEBRA⦠Warm up: 5.2 Review-Writing an equation of a line given two points Learning Goal: 5.3 Writing a linear equation in Point-Slope form Independent Practice
2
WARM UP: Write an equation for the linear function π with the values π β2 =10 and π 4 =β2
Rewrite function values as coordinate pairs (points): 2. Calculate slope: π= π= β12 6 Calculate the y-intercept: π¦=ππ₯+π β2=β2 4 +π β2=β8+π π=π βπ, ππ , (π, βπ) π₯ π¦ β2β10 REMEMBER: π(π)=ππ+π 4β(β2) =βπ πβ π ππππ: π¦βπππ‘ππππππ‘: β2 6 πβ π(π₯)= π₯+ β2 6
3
Newβ¦POINT-SLOPE FORM:
5.3 WRITING LINEAR EQUATIONS IN POINT-SLOPE FORM We learnedβ¦ SLOPE-INTERCEPT FORM: Newβ¦POINT-SLOPE FORM: π¦β π¦ 1 =π(π₯β π₯ 1 ) π¦=ππ₯+π π ππππ= πππ π ππ’π πππππ‘: ( π₯ 1 , π¦ 1 ) π ππππ= πππ π ππ’π π¦βπππ‘ππππππ‘: (0, π) π ππππ= 1 3 πππ£ππ πππππ‘:(4, 2) π¦β = (π₯β ) 1 3 2 4
4
π¦β = π₯β π¦+3=2(π₯β4) π¦β = π₯β π¦β4=β2(π₯+1) β3 2 4 4 β2 β1
5.3 WRITING LINEAR EQUATIONS IN POINT-SLOPE FORM PRACTICE: Write an equation of the line in point-slope form given a point and slope. REMEMBER: πβ π π =π(πβ π π ) 1. π ππππ: π ππππ:β2 πππππ‘:(4, β3) πππππ‘:(β1, 4) π¦β = π₯β π¦+3=2(π₯β4) β3 2 4 π¦β = π₯β π¦β4=β2(π₯+1) 4 β2 β1
5
On a separate piece of paper try the following problems:
PRACTICE: (10 MINUTES) On a separate piece of paper try the following problems: Pg. 305: 3-11
6
1. π¦+3=2 π₯β4 π¦+3=2π₯β8 β 3 β 3 π=ππβππ π ππππ: π¦βπππ‘ππππππ‘:
5.3Changing POINT-SLOPE FORM to SLOPE-INTERCEPT FORM Rewrite the equation into slope-intercept form. SOLVE FOR Y! 1. π¦+3=2 π₯β4 π¦+3=2π₯β8 β β 3 π=ππβππ π ππππ: π¦βπππ‘ππππππ‘: 2. π¦β4=β2 π₯+1 π¦β4=β2π₯β2 π=βππ+π π ππππ: π¦βπππ‘ππππππ‘: 2 β2 β11 2
7
π¦+2= 2 3 (π₯β3) 2 3 π ππππ: πππππ‘: (3, β2)
5.3 Graphing equations in POINT-SLOPE FORM **Points are always opposite the sign!!! Graph the equation: πππππ‘:( π₯ 1 , π¦ 1 ) REMEMBER: πβ π π =π(πβ π π ) π¦+2= 2 3 (π₯β3) π ππππ= πππ π ππ’π 3 2 π‘π πππ‘ π‘π πππ₯π‘ πππππ‘β 2 3 π ππππ: πππππ‘: (3, β2) π π‘πππ‘β
8
π¦β2= 1 2 (π₯+2) 1 2 π ππππ: πππππ‘: (β2, 2)
5.3 Graphing equations in POINT-SLOPE FORM **Points are always opposite the sign!!! PRACTICE: Graph the equation: πππππ‘:( π₯ 1 , π¦ 1 ) REMEMBER: πβ π π =π(πβ π π ) π¦β2= 1 2 (π₯+2) π ππππ= πππ π ππ’π 2 π‘π πππ‘ π‘π πππ₯π‘ πππππ‘β 1 2 1 π ππππ: πππππ‘: (β2, 2) π π‘πππ‘β
9
On the same piece of paper try the following problems:
PRACTICE: (15 MINUTES) On the same piece of paper try the following problems: Pg. 306: 14-19
10
5.3 Writing equations in POINT-SLOPE FORM given a graph
Write an equation in point-slope form of the line shown. REMEMBER: πβ π π =π(πβ π π ) 1. Find slope: π ππππ= πππ π ππ’π π=β1 Choose one point: *doesnβt matter which one* (1, 1) 3. Plug into point-slope form. (β1, 3) = β2 2 β2 (1, 1) 2 π¦β = π₯β π¦β1=β(π₯β1) 1 β1 1
11
5.3 Writing equations in POINT-SLOPE FORM given points
Write an equation in point-slope form given the two points. REMEMBER: πβ π π =π(πβ π π ) π, π , (π, π) 1. Find slope: π= π= 1 2 Choose one point. *doesnβt matter which one* 3. Plug into point-slope form. 4β3 1 2 4β2 π¦β = π₯β ππ
3 2 (π, π) ο 1 2 4 4 (π, π)ο
12
HOMEWORK #4: Pg. 305: 3-30 all If finished, work on other assignments:
HW #1: Pg. 286: 3-23 all HW #2: Pg. 286: all HW #3: Pg. 296: 3-7, 11-14, 22-25
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.