Download presentation
Presentation is loading. Please wait.
Published byOliver Merritt Modified over 9 years ago
1
Learning question: How can genetic diagrams be used to solve problems? What do these two famous people have in common? Title: Using genetics Thursday 23 rd January 2014 Homework: Learning package 6 (apart from 1(c) ) for Monday 27 th January
2
Learning Outcomes Explain the terms allele, locus, phenotype, genotype, dominant, codominant and recessive; Explain the terms linkage and crossing-over;
3
StarterStarter Complete the activity sheet on genetics. There are three parts to this activity: –Vocabulary –Genetic diagrams –Codomiance You will be tested on all three areas in your examination!
4
Progress tracker 0-55-1010-15
5
Monohybrid inheritance Mendel’s First Law –principle of segregation “The alleles of a gene exist in pairs but when gametes are formed, the members of each pair pass into different gametes, thus each gamete contains only one of each allele.”
6
Genetic Cross conventions Use symbols to represent two alleles Alleles of the same gene should be given the same letter –Capital letter represents the dominant allele –Small letter represents the recessive allele Choose letters where the capital and small letter look different –The examiner needs to be in no doubt about what you have written
7
Inheritance of height in pea plants Laying out the cross –P phenotype –P genotype –Gametes –F1 genotype –F1 phenotype –F1 self-fertilised –Gametes –Random fertilisation –F2 genotypic ratio –F2 phenotypic ratio
8
Inheritance of height in pea plants Follow out the following cross to the F2 generation –Homozygous tall pea plant with a homozygous dwarf pea plant Write out the genotypic and phenotypic ratios from the F2 generation geneAllelerelationshipSymbol Height of pea plants TallDominant T dwarfrecessive t
9
Pupil Activity – example question (a)In peas the height of the plant is controlled by one gene which has two alleles. T represents the dominant allele for tall stems. t represents the allele for short stems. True breeding, tall-stemmed pea plants were crossed with short-stemmed pea plants to produce the F 1 generation. (i)State the genotypes of the parents. (ii) State the phenotype of the F 1 plants. Plants from the F 1 generation were crossed to produce the F 2 generation of plants. (iii) State the phenotypes and their expected ratio in the F 2 generation.
10
Cystic Fibrosis Cystic Fibrosis is caused by a mutation to a gene on one of the autosomes. Mutation –Changes the shape of the transmembrane chloride ion channels (CFTR protein) –The CFTR gene is found on Chromosome 7 –The faulty gene is recessive
11
Inheritance of cystic fibrosis Three possible genotypes –FFunaffected –Ffunaffected –ffcystic fibrosis Remember gametes can only contain one allele for the CFTR gene At fertilisation, any gamete from the father can fertilise any gamete from the mother –This can be shown in a genetic diagram
12
Genetic diagram showing the chances of a heterozygous man and a heterozygous woman having a child with cystic fibrosis.
13
Phenotype ratio of offspring Genotype ratio 1FF:2Ff:1ff Phenotype ratio 3 unaffected:1cystic fibrosis Can also be expressed as –25% chance of the child having cystic fibrosis –Probability of 0.25 that a child will inherit the disease –Probability that 1 in 4 that a child from these parents will have this disease.
14
Mini Plenary 1. In tomato plants the allele for red fruit is dominant to the allele for yellow fruit. If a heterozygous tomato plant is crossed with a plant which produces yellow fruit, the expected phenotype ratio of the offspring would be A3 red : 1 yellow B1 red : 3 yellow C1 red : 2 yellow D1 red : 1 yellow
15
2. Achoo syndrome is a dominant characteristic in humans which causes the sufferer to sneeze in response to bright light. A woman who is homozygous for the syndrome and a man who is unaffected have children. What proportion of their children would be expected to have Achoo syndrome? A 0% B 25% C 50% D100%
16
3. Which term refers to a description of a characteristic of an organism? Agenotype Bphenotype Callele Dnatural selection
17
4. Which term refers to forms of a gene controlling the same characteristic? Agenotypes Bphenotypes Calleles Ddominant
18
Learning Outcome Use genetic diagrams to solve problems involving sex-linkage and codominance.
19
Sex-LinkageSex-Linkage Sex-linked genes are genes whose loci are on the X or Y chromosomes The sex chromosomes are not homologous, as many genes present on the X are not present on the Y. Examples –Haemophilia –Fragile X syndrome –Red green colour blindness
20
Sex Chromosomes
21
Factor VIII and Haemophilia Haemophilia is caused by a recessive allele of a gene that codes for a faulty version of the protein factor VIII –X H normal allele –X h haemophilia allele Remember, males are XY, females are XX
22
Possible genotypes and phenotypes Applying your knowledge Write out the genotypes for these phenotypes in hemophilia Affected male_____________ Normal male ______________ Affected female ____________ Normal female ____________ Carrier female ____________
23
Inheritance of Haemophilia Note! The stages for writing out a genetic diagram is the same
24
Pedigree for a sex linked recessive disease Write out the genotypes for as many people in the family tree as possible.
25
Mini-plenaryMini-plenary Collect a “connect 4” board and question sheet. In pairs, test each others knowledge of genetics and try to win the game!
26
CodominanceCodominance Codominance describes a pair of alleles, neither of which is dominant over the other. This means both have an effect on the phenotype when present together in the genotype
27
Codominance example Flower colour in plants –C R red –C w white Genotypes –C R C R red flowers –C R C W pink flowers –C W C W white flowers Write out a genetic cross between a pure breeding red plant and a pure breeding white plant. Carry out the cross to the F 2 generation. –Write out the genotype and phenotype ratio for the F 2 generation
28
Revision Question Coat colour in Galloway cattle is controlled by a gene with two alleles. The C R allele produces red hairs and therefore a red coat colour. The C w allele produces white hairs. A farmer crossed a true-breeding, red-coated cow with a true- breeding white-coated bull. The calf produced had roan coat colouring (made up of an equal number of red and white hairs). Explain the result and draw a genetic diagram to predict the outcome of crossing two roan coloured animals.
29
Inheritance of A, B, AB and O blood groups Human blood groups give an example of codominance and multiple alleles –There are 3 alleles present I A I B I o
30
I A and I B are codominant I o is recessive Remember each human will only have two alleles
31
Blood Groups GenotypePhenotype IAIAIAIA Blood Group A I A I o Blood Group A IAIBIAIB Blood Group AB IBIBIBIB Blood Group B I B I o Blood Group B I o Blood Group o
32
Inheritance of blood groups Carry out genetic crosses for the following examples. –Two parents have blood groups A and B, the father is I A I o and the mother is I B I o –Father has blood group AB and the mother has blood group O –Mother is homozygous blood group A and the father is heterozygous B.
33
Progress tracker 0-55-1010-15
34
Learning Outcome Describe the interactions between loci (epistasis). Predict phenotypic ratios in problems involving epistasis.
35
Dihybrid Inheritance Monohybrid cross –Inheritance of one gene Dihybrid cross –Inheritance of two genes
36
Example – dihybrid cross Tomato plants –Stem colour A purple stemagreen stem –Leaf shape Dcut leavesdpotato leaves NOTE –In the heterozygote AaDd due to independent assortment in meiosis there are 4 possible gamete combinations ADAdaDad
37
CrossesCrosses Cross a heterozygous plant with a plant with a green stem and potato leaves Cross two heterozygous tomato plants
38
Dihybrid Inheritance A woman with cystic fibrosis has blood group A (genotype I A I o ). Her partner does not have cystic fibrosis and is not a carrier for it. He has blood group O. Write down the genotypes of these two people. With the help of a full and correctly laid out genetic diagram, determine the possible genotypes and phenotypes of any children that they may have.
39
Autosomal linkage Each Chromosome carries a large number of linked genes If two genes are on the same chromosome then independent assortment can not take place. The genes are transmitted together and are said to be linked.
40
Linked Genes Where linked genes are involved the offspring of a dihybrid cross will result in a 3:1 ratio instead of the 9:3:3:1 ratio. Example: –In peas, the genes for plant height and seed colour are on the same chromosome (i.e. linked)
41
Learning Outcome Describe the interactions between loci (epistasis). Predict phenotypic ratios in problems involving epistasis.
42
Flower colour in sweet pea Flower colour –Colourless precursor of a pigmentC –Gene that controls conversion of this pigment to purple P –Both dominant alleles need to be present for the purple colour to develop Cross –Cross two white flowered plants with the genotypes CCpp and ccPP –Follow this cross through to the F 2 generation
43
Interactions of unlinked genes A single character maybe influenced by two or more unlinked genes. E.g. determination of comb shape in domestic poultry –Dominant allele Ppea comb –Dominant allele Rrose comb –Two dominant alleleswalnut comb –No dominant allelessingle comb
44
Genetic Crosses Carry out a genetic cross between a true-breeding pea comb and a true breeding rose comb Follow this cross through to the F 2 generation
45
Inheritance of coat colour in mice Wild mice have a coat colour that is referred to as “agouti”. –Agouti (A) is dominant to black (a) –C is a dominant gene required for coat colour to develop –A homozygous recessive cc means that no pigment can be formed and the individual is albino
46
Inheritance of coat colour in mice Carry out a cross between a pure-breeding black mouse (aaCC) and an albino (AAcc) Follow this cross through to the F 2 generation.
47
EpistasisEpistasis This is the interaction of different gene loci so that one gene locus masks or suppresses the expression of another gene locus. Genes can –Work antagonistically resulting in masking –Work complementary
48
Epistasis ratios 9 : 3 : 4 ratio –Suggests recessive epistasis 9 : 7 ratio –Suggests epistasis by complementary action 12 : 3 : 1 ratio or 13 : 3 ratio –Suggests dominant epistasis
49
Predicting phenotypic ratios Read through pages 132 and 133 of your textbook –Answer questions 1 – 7 –Complete the stretch and challenge question on “eye colour in humans” Read through and complete the worksheet provided for you on epistasis
50
Learning objectives (e) use genetic diagrams to solve problems involving sex linkage and codominance; (f) describe the interactions between loci (epistasis). (Production of genetic diagrams is not required); (g) predict phenotypic ratios in problems involving epistasis;
51
Learning objectives (e) use genetic diagrams to solve problems involving sex linkage and codominance; (f) describe the interactions between loci (epistasis). (Production of genetic diagrams is not required); (g) predict phenotypic ratios in problems involving epistasis;
52
GeneticsGenetics Genetics is the study of inheritance Allele –different varieties of the same gene Locus –position of a gene on a chromosome
53
GeneticsGenetics Dominant –An allele whose effect is expressed in the phenotype if one copy present Recessive –An allele which only expresses as a homozygote Co-dominant –Both alleles have an effect on the phenotype
54
GeneticsGenetics Genotype –genetic constitution of the organism Phenotype –appearance of character resulting from inherited information
55
Homozygous –Individual is true breeding –Possesses two alleles of a gene e.g. RR or rr Heterozygous –Two different alleles for a gene e.g. Rr
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.