Download presentation
Published byWendy Carroll Modified over 9 years ago
1
G. Bogdanić: Group Contribution Methods for Predicting Properties of Systems Containing Polymers
13/10/2011 Group Contribution Methods for Predicting Properties of Systems Containing Polymers Grozdana Bogdanić Institute of Chemical Process Fundamentals ASCR, Prague
2
−M−M−M−M−M−M−M−M−M−M−
POLY − MER many units −M−M−M−M−M−M−M−M−M−M− or −(M)n−
4
Modeling description of thermophysical properties (vapor pressures, viscosities, caloric data, etc.) of pure components and mixtures properties of different apparatuses like reactors, distillation columns, pumps, etc. chemical reactions and kinetics environmental and safety-related data
5
Two main different types of models can be distinguished:
Rather simple equations and correlations where parameters are fitted to experimental data Predictive methods where properties are estimated
6
VLE 1.1. Group contribution methods for predicting the properties of polymer–solvent mixtures Activity coefficient models Equations of state 2. LLE 2.1. Group contribution methods for predicting the 2.2. Group contribution methods for predicting the properties of polymer–polymer mixtures (polymer blends) 3. Conclusions
7
In: Polymeric Materials, Chapter 7
G. Bogdanić: Additive Group Contribution Methods for Predicting the Properties of Polymer systems In: Polymeric Materials, Chapter 7 Transworld Reserach Signpost, Trivandrum, India (2009).
8
G. Bogdanić, I. Wichterle, A. Erceg Kuzmić: Collection of Miscibility Data and Phase Behavior of Binary Polymer Blends based on Styrene, 2,6-Dimethyl-1,4-Phenylene Oxide and of Their Derivatives Transworld Research Signpost, Trivandrum, India (2010).
9
Group Contribution Methods for Predicting Properties of Polymer – Solvent Mixtures (VLE)
10
Calculation of Free Volumes
Component T [°C] d [g cm-3] V [cm3 mol-1] V* Vf Benzene 25 0.8735 89.3 91.9 27.4 Acetone 0.7846 73.9 50.0 23.9 Toluene 0.8616 106.9 76.2 30.6 Cyclohexane 0.7749 108.4 78.6 29.8 Dioxane 20 1.0337 85.1 61.9 23.3 Poly(isobutylene) 0.9169 61.1 52.4 8.7 Poly(ethylene oxide) 1.126 39.1 30.9 8.2 Poly(vinyl acetate) 1.19 60.7 58.7 2.0 Polystyrene 1.05 99.0 80.4 18.6 Poly(vinyl alcohol) 1.27 34.6 32.1 2.5 Poly(vinyl pyrrolidone) 1.215
11
The UNIFAC-FV Model T. Oishi, J. M. Prausnitz, 1978.
combinatorial residual free-volume
12
The Entropic-FV Model H. S. Elbro, Aa. Fredenslund, P. Rasmussen, 1990. G. M. Kontogeorgis, Aa. Fredenslund, D. P. Tassios, 1993. (UNIFAC) The free-volume definition:
13
The GC-Flory EOS F. Chen, Aa. Fredenslund, P. Rasmussen, 1990.
G. Bogdanić, Aa. Fredenslund, 1994. combinatorial FV attractive N. Muro-Suñé, R. Gani, G. Bell, I. Shirley, 2005.
15
The GC-Lattice-Fluid EOS
M. S. High, R. P. Danner, 1989; 1990. B. C. Lee, R. P. Danner, 1996.
16
[G. Bogdanić, Aa. Fredenslund, 1995]
UNIFAC-FV Entropic-FV GC-Flory GC-LF (1990) Prediction of infinite dilution activity coefficients versus experimental values for polymer solutions (more than 120 systems) [G. Bogdanić, Aa. Fredenslund, 1995]
17
Prediction of infinite dilution activity coefficients versus experimental values for systems containing nonpolar solvents ( systems) [B. C. Lee, R .P. Danner, 1997]
18
Predictions of infinite dilution activity coefficients versus experimental values for systems containing weakly polar solvents (cca 60 systems) [B. C. Lee, R. P. Danner, 1997]
19
Predictions of infinite dilution activity coefficients versus experimental values for systems containing strongly polar solvents (cca 30 systems) [B. C. Lee, R. P. Danner, 1997]
20
Activity of MEK in PS (Mn = 103000)
T = 383 K T = 373 K T = 322 K Activity of 2-methyl heptane in PVC (Mn = 30000; Mn = ) Activity of ethyl benzene in PBD (Mn = ) Activity of MEK in PS (Mn = ) [G. Bogdanić, Aa. Fredenslund, 1995]
21
LLE Polymer solutions Polymer blends
23
PVAL–water binary mixture at 420 K
GM/RT versus molar fraction (GM/RT – se) versus molar fraction of the polymer of the polymer
24
The Segmental Interaction UNIQUAC-FV Model(s)
G. Bogdanić, J. Vidal, 2000. G. D. Pappa, E. C. Voutsas, D. P. Tassios, 2001.
26
Correlation ( ) of LLE PEG/water system by the UNIQUAC–FV model
[J. Vidal, G. Bogdanić, 1998]
27
Correlation and prediction of LLE for PBD/n-octane by the UNIQUAC-FV
model [G. Bogdanić, J. Vidal, 2000] Mv=65000 g/mol, correlation Mv= g/mol, prediction Mw=44500 g/mol, prediction
28
Correlation and prediction of LLE for poly(S-co-BMA)/MEK by the
UNIQUAC-FV model [G. Bogdanić, J. Vidal, 2000] poly(S0.54-co-BMA0.46), Mw = g/mol, correlation poly(S0.80-co-BMA0.20), Mw = g/mol, prediction
29
G. Bogdanić, Aa. Fredenslund, 1994.
The GC-Flory EOS G. Bogdanić, Aa. Fredenslund, 1994. G. Bogdanić, 2002. LLE parameters
30
Coexistence curves for HDPE/n-hexane systems as correlated
by the GC-Flory EOS ( ) [G. Bogdanić, 2002]
31
Coexistence curves for PIB/n-hexane systems as correlated by
G. Bogdanić: Group Contribution Methods for Predicting Properties of Systems Containing Polymers 13/10/2011 Coexistence curves for PIB/n-hexane systems as correlated by the GC-Flory EOS ( ) [G. Bogdanić, 2002]
32
The Mean-Field Theory R. P. Kambour, J. T. Bendler, R. C. Bopp, 1983.
G. ten Brinke, F. E. Karasz, W. J. MacKnight, 1983. combinatorial residual
33
T = 473 K Miscibility of poly(S-co-oClS)/SPPO Miscibility of poly(S-co-pClS)/SPPO () one phase; () two phases; ( ) predicted miscibility/immiscibility boundary by the mean-field model [G. Bogdanić, R. Vuković, et. al., 1997]
34
Miscibility behavior of PPO/poly(oFS-co-pClS) system ( ) correlated by the UNIQUAC-FV model [G. Bogdanić, 2006]
35
the UNIQUAC-FV model [G. Bogdanić, 2006]
T = 473 K Miscibility of SPPO/poly(oBrS-co-pBrS) system ( ) correlated by the UNIQUAC-FV model [G. Bogdanić, 2006]
36
Thermodynamic Databases for Polymer Systems
H. Wen, H.S. Elbro, P. Alessi, Polymer Solution Data Collection, Dechema Chemistry Series, Frankfurt, 1992. M.S. High, R.P. Danner, Polymer Solution Handbook; DIPPR 881 Project. Design Institute for Physical Property Data, 1992. C. Wohlfarth, Vapor-Liquid Equilibrium Data of Binary Polymer Solutions, Elsevier, Amsterdam, 1994. P.Zoller, D.J. Walsh, Standard Pressure-Volume- Temperature Data for Polymers, Technomics Publishing Co., Lancaster, 1995.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.