Download presentation
Presentation is loading. Please wait.
Published byDylan King Modified over 9 years ago
1
Matthew Brown University of British Columbia (prev.) Microsoft Research [ Collaborators: † Simon Winder, *Gang Hua, † Rick Szeliski † =MS Research, *=MS Live Labs]
2
Panoramic Stitching Digital Image Pro, Windows Live Photogallery, Expression, HDView 3D Modelling Photosynth Virtual Earth Location Recognition Image Search Lincoln [ yellow = product, white = technology preview, grey = research ]
3
[ http://labs.live.com/photosynth ]
4
[ Slide credit: Noah Snavely] Scene reconstruction Photo Explorer Input photographs Relative camera positions and orientations Point cloud Sparse correspondence [ http://photour.cs.washington.edu ] Photosynth is based on Photo Tourism [Snavely, Seitz, Szeliski SIGGRAPH 2006 ] Photo Tourism uses SIFT for correspondence
5
[ Seitz et al CVPR 2006, Goesele et al ICCV 2007 ]
6
[ Photo Tourism – Snavely, Seitz, Szeliski - SIGGRAPH 2006 ] 3D Point Cloud
7
[ Photo Tourism – Snavely, Seitz, Szeliski - SIGGRAPH 2006 ] 3D Point Cloud
8
3D Point Cloud [ Photo Tourism – Snavely, Seitz, Szeliski - SIGGRAPH 2006 ]
9
3D Point Cloud [ Photo Tourism – Snavely, Seitz, Szeliski - SIGGRAPH 2006 ]
11
† = for simplicity + efficiency * = measured by ROC curve Q: Form of the descriptor function f(.)? Find a function of a local image patch descriptor = f ( ) s.t. a nearest neighbour classifier † is optimal*
12
Algorithm Normalized Image Patch Descriptor Vector Gradients Quantized to k Orientations Normalize Summation [ SIFT – Lowe ICCV 1999 ]
13
Algorithm Normalized Image Patch Descriptor Vector Gradients Quantized to k Orientations Normalize (plus PCA) Summation [ GLOH – Mikolajzcyk Schmid PAMI 2005 ]
14
Algorithm Normalized Image Patch Descriptor Vector Create Edge Map Normalize Summation [ Shape Context – Belongie Malik Puzicha NIPS 2000 ]
15
Algorithm Normalized Image Patch Descriptor Vector Feature Detector Normalize Summation TSN [ Geometric Blur – Berg Malik CVPR 2001 ]
16
Normalized Image Patch Descriptor Vector TSN Parameters Propose a framework for descriptor algorithms Learn parameters to find best performance Train on a ground truth data set based on accurate 3D matches
17
Normalized Image Patch (w x h) Descriptor Vector TSN Transformation block Local gradients Steerable filters Isotropic filters Haar wavelets Local classifier Quantized intensities (w x h x k) Output: one length k vector per source pixel
18
Normalized Image Patch (w x h) Descriptor Vector SNT (w x h x k) (m x k) Spatial summation block with m regions Output: m length k vectors S1 S2 S3 S4
19
Normalized Image Patch (w x h) Descriptor Vector SNT (w x h x k) (m x k) Normalization Block Unit normalization SIFT normalization with clipping
20
STN
21
S2T1aN2 Parameters Training Pairs Incorrect Match % Correct Match % Update Parameters (Powell) Descriptor Distances
22
S2T1aN2 Parameters Test Pairs Incorrect Match % Correct Match % Final Error Rate Descriptor Distances 95%
24
Polar lattice S2 always has lower error rate than rectangular S1 Gradient and DOG with S2 beat our SIFT reference (4% vs 6% error)
26
Steerable filters produce great results if phase information is kept
28
SIFT normalization is important Best result: 4 th order steerable filters with phase information combined with polar S4-25 Gaussian summation block (2% error vs SIFT at 6%) Very large numbers of dimensions
29
w PCA
30
w LDA
33
LDA on pixels ≈ SIFT (6%) PCA gave small improvement Normalised patches Gradient patches
34
Effect of # of Training Pairs LDA on pixels ≈ SIFT (6%) PCA gave small improvement Need ~100,000 training examples
35
LDA on T1-T3 < 4.5% Optimal #dimensions ~20-30 Post-normalisation important T1 T3
36
LDA using T blocks T1–T4 LDA on T1-T3 < 4.5% Optimal #dimensions ~20-30 Post-normalisation important
37
LDA using CVPR 07 descriptors Overall best results #dimensions reduced from 100’s to 10’s Need more challenging dataset!
38
Algorithm Normalized Image Patch Descriptor Vector Feature Detector Normalize Summation TSN “complex” “simple”
39
Used learning to obtain good descriptors Achieved error rates 1/3 of SIFT Produced useful ground truth data set Future Work Use multi-view stereo ground truth Multi-level simple-complex architecture + non-parametric T blocks Learn interest point detectors [ refs: 1) Winder, Brown CVPR 2007 2) Hua, Brown, Winder ICCV 2007 ] mbrown@cs.ubc.ca
41
[http://research.microsoft.com/ivm/hdview.htm ]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.