Download presentation
Presentation is loading. Please wait.
Published byAgatha Black Modified over 9 years ago
1
MAE 435 Fall 2013
2
Sahil DhaliChristopher Quarles Michael Foch Brockton Baskette Kyle Wade Cian Branco Advisor: Dr. Robert Ash, P.E.
3
Space debris are a serious hazard to continued Space exploration Dead CubeSats are hard to track De-Orbit Device Project aimed at Prototype for 1U CubeSats
4
De-orbit Device Project is multidepartment effort between the Mechanical and Electrical Engineering Departments MAE 435 Group’s goal to build the prototype
6
Sublimation at room temperature
7
Sounding Rocket Altitude: 160kms. Pressure for sublimation@160kms: 1.42*10 -6 Temperature for sublimation@160kms: -41’C
9
Unknown leak in large vacuum chamber Extensive man hours spent troubleshooting and brainstorming solutions Ultimately had to resort to using small vacuum chamber
11
The small chamber reaches minimum pressure around 3 minutes
12
Design required to fit inside small chamber at minimal cost Prototype: Steel wire wound around itself in the shape of a Fermat’s Spiral. Operates on 4 AA batteries.
13
The element can achieve temperatures between 60’C to 85’C The spiral grill was designed to create a flat surface area with as much contact with the plate holding the benzoic acid.
14
Materials readily available Inexpensive Easy to modify design Difficult to control heat output Power runs out quickly Requires Direct Contact
15
Default temperature:65-80 ‘C Potentially can go up to 180’C with appropriate voltage. Made of 4 major parts: The LED light cover The lithium battery The Atomizer (heating element) The mouth piece
16
Fig 1 Fig 2Fig 3 Fig 1 shows the mouth of the piece where the airbrake would be attached with the epoxy. Fig 2 shows the top view of the heating element. The benzoic acid crystal would be secured on the screen over the heating coil. Fig 3 shows the battery pack we used to perform the experiment. It attches to the bottom of the element and powers to heat the coil visible in fig.2.
17
Extremely light weight; usually Al alloy;….. Weight Constraint: Check Safe and easy to use and store;….. Storing and lasting Constraint: Check Power efficient; Works on a 3.1V – 6.7V to achieve max heating capabilities;….. Power Constraint: Check Size is significantly smaller than previous design, but needs to be more compact….. Space Constraint: Not Check Bowl on which acid to be secured cannot hold all the acid required for complete deployment….. Container Volume Constraint: Not Check
18
Meets our temperature requirements, which was our main concern. The on board lithium battery should be enough to power our heater. This device is powered by a button which has to be manually pressed Now all that is needed for the heating element is a bigger bowl to store the complete amount of the acid, securing it in the mylar.
19
Design remote activation for heating element Fit all the parts together for one final test before launch.
20
Operates mission specific transceivers, antennas, transmission lines, amplifiers and digital signal processing. Intended to communicate with orbiting weather satellites and amateur radios to obtain earth images and current prevailing weather conditions. Designed to receive data from NOAA weather satellites. OUR PURPOSE: Use the SGS to keep constant communication with our CubeSat to obtain its position coordinates and signal to deploy the airbrake on command.
21
Material - Aluminized Mylar for its strength and reflectivity. (DuPont Films) Target Cross-sectional area – 1 m 2 The inflation medium will be benzoic acid.
22
Benzoic Acid Pressure P min > 0.1813 Pa (greater than environment @ 90 km) Partial Pressure of Air Ambient air in balloon is to be removed to prevent premature inflation Benzoic Acid Placement Must absorb enough heat from heating element to reach sublimation
23
New material from (Coated Product Sales) was ideal for sealing. Rectangular Cross-Section (Pillow shape) was used. Cross-sectional area may need to be reduced due to chamber volume.
24
Benzoic acid stored in a washer with a screen. Epoxied (cold welded) to inflatable. Located on the inner surface of balloon.
25
Vacuum Seal-Off Fitting – Oerlikon Leybold product ▪ Predesigned to seal off during vacuuming, solid heat conduction, low weight and small profile ▪ Vacuum seal-off fitting was press-fit into the bottom of chamber ▪ Balloon will be epoxy sealed to the fitting
26
During removal of ambient air, the material was sucked into the valve exhaust creating a seal. Did not allow for all ambient air to be evacuated. Solutions included folding the balloon before pumping, a pump with a throttle and/or collapsible stent.
27
Provides a pressurized zone to house the balloon. Contains a valve mounted in the bottom surface. Current prototype does not account for camera mounting
29
Single layer of Kapton failed. Punctured by sharp corners of chamber cap
31
5 mil Mylar holds pressure with 2 gaskets There are multiple points of deformation in membrane
32
Mounting doors on pins Locking mechanism to keep the doors closed
33
Prototype in current state reduces chance for waste Overall Goal to pass working prototype to current 434 students at end of the semester has been met Hand-off to occur next week
34
Questions? Comments? Concerns? Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.