Presentation is loading. Please wait.

Presentation is loading. Please wait.

Flow Networks Formalization Basic Results Ford-Fulkerson Edmunds-Karp Bipartite Matching Min-cut.

Similar presentations


Presentation on theme: "Flow Networks Formalization Basic Results Ford-Fulkerson Edmunds-Karp Bipartite Matching Min-cut."— Presentation transcript:

1 Flow Networks zichun@comp.nus.edu.sg

2 Formalization Basic Results Ford-Fulkerson Edmunds-Karp Bipartite Matching Min-cut

3 Flow Network

4 Properties of Flow

5 Maximum Flow Value of Flow

6 Motivating Problem s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 16 10 4 12 20 9 7 4 14 13

7 Motivating Problem s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11/16 10 1/4 12/12 15/20 4/9 7/7 4/4 11/14 8/13

8 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11/16 10 1/4 15/20 4/9 7/7 4/4 11/14 8/13 12/12

9 Multiple Sources / Sinks s1s1 v1v1 v2v2 v3v3 v4v4 t1t1 16 10 4 12 20 9 7 4 14 13 t2t2 4 s2s2 4

10 Multiple Sources / Sinks s1s1 v1v1 v2v2 v3v3 v4v4 t1t1 16 10 4 12 20 9 7 4 14 13 t2t2 4 s2s2 4 S t

11 Implicit Summation Notation

12 Key Equalities

13

14 Flow Value Definition Homomorphism Flow Conservation Skew Symmetry Homomorphism Flow Conservation

15 Ford-Fulkerson

16 Residual network

17 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11/16 10 1/4 12/12 15/20 4/9 7/7 4/4 11/14 8/13 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11 5 12 15 4 11 8 4 7 5 3 0 5 3 0 0 5

18 Augmenting Path A path of non-zero weight from s to t in G f

19 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11/16 10 1/4 12/12 15/20 4/9 7/7 4/4 11/14 8/13 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11 5 12 15 4 11 8 4 7 5 3 0 5 3 0 0 5

20 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11/16 10 1/4 12/12 15/20 4/9 7/7 4/4 11/14 8/13 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11 5 12 15 4 11 8 4 7 5 3 0 5 3 0 0 5

21 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11/16 10 1/4 12/12 15/20 4/9 7/7 4/4 11/14 8/13 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11 5 12 15 4 11 8 4 7 5 3 0 5 3 0 0 5

22 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11/16 10 1/4 12/12 20/20 0/9 7/7 4/4 11/14 13/13 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11 5 12 20 4 11 13 11 0 7 0 3 0 9 3 0 0 0

23 S-T Cut

24 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11/16 10 1/4 12/12 15/20 4/9 7/7 4/4 11/14 8/13 f(S, T) = 12 – 4 + 11 = 19 c(S, T) = 12 + 14 = 26

25 Let f be a flow in a flow network G with source s and sink t, and let (S, T) be a cut of G. Then the net flow across (S, T) is f(S, T) = |f| Homomorphism Flow Conservation Homomorphism Flow Conservation Definition

26 The value of any flow f in a flow network G is bounded by the capacity of any cut of G

27 Min-Cut Max-Flow 1. f is a maximum flow in G 2.The residual network G f contains no augmenting path 3.|f|= c(S, T) for some cut (S, T) of G

28 1.Premise: f is a max-flow in G 2.Assume G f has augmenting path p 3.We can augment G f with p to get a flow f’ > f – Contradicts [1] Hence G f has no augmenting paths

29

30 The value of any flow f in a flow network G is bounded by the capacity of any cut of G

31 Ford-Fulkerson Termination: G f has no augmenting path iff flow is maximum

32 Run-time

33 s v1v1 v2v2 t 1 1,000,000

34 s v1v1 v2v2 t 1

35 s v1v1 v2v2 t 1 999,9991,000,000 1 1

36 s v1v1 v2v2 t 1 999,9991,000,000 1 1

37 s v1v1 v2v2 t 1 999,999 1,000,000 999,999 1 1 1 1

38 s v1v1 v2v2 t 1 1,000,000 999,999 1 1 1 1

39 Edmunds Karp Run-time: O(VE 2 )

40 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11 5 12 15 4 11 8 4 7 5 3 0 5 3 0 0 5 Critical Edge

41 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11 5 12 15 4 11 8 4 7 5 3 0 5 3 0 0 5 Critical Edge

42 s v1v1 v2v2 v3v3 v4v4 t Factory Warehouse 11 5 12 15 4 11 8 4 7 5 3 0 5 3 0 0 5

43

44 Since there are O(E) edges, the number of augmenting path is bounded by O(VE) [by Lemma]. Run-time: O(VE 2 )

45 Bipartite Matching

46

47 st

48 st


Download ppt "Flow Networks Formalization Basic Results Ford-Fulkerson Edmunds-Karp Bipartite Matching Min-cut."

Similar presentations


Ads by Google