Download presentation
Presentation is loading. Please wait.
Published byGwenda Jordan Modified over 9 years ago
1
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE
2
Polarized Electron Scattering e- unpolarized quarks or electrons or protons Parity conserving Parity violating
3
Electroweak Mixing Angle e = g sin w Characterizes the mixing between the weak and EM interaction in the electroweak theory sin 2 w = 1 - MwMw MzMz 2 2
4
SLAC Parity Experiments e- Target (unpolarized) High Energy Detector A PV = - + Parity-violating asymmetry RL RL
5
End Station A
6
SLAC E122
7
Detector e 16 – 22 GeV Liquid Deuterium GaAs source High current 30 cm target Dedicated run
8
Reversed every few runs 120 Hz
9
SLAC E122 waveplate reversal
10
Parity-violating asymmetry SLAC E122 waveplate reversal
11
SLAC E122 Energy Scan Parity-violating asymmetry
12
SLAC E122 Result sin 2 w = 0.224 + 0.020 First definitive measurement of mixing between the weak and electromagnetic interaction (1978)
13
Atomic Parity Violation Bismuth
14
Atomic Parity Violation Bismuth
15
Atomic Parity Violation Bismuth
16
Atomic Parity Violation Bismuth E122
17
LEP and SLC e + e - collider sin 2 w = 0.00017 (PDG2002)from Z pole measurements TODAY...
18
Q (GeV) sin 2 w Status in 1999 ~5%
19
SLAC Experiment E158 Detector e 50 GeV Liquid Hydrogen A PV = - + Without electroweak radiative corrections, In practice: A PV ~1.5 x 10 -7 2 (3 + cos ) 2 2 16 sin 2 A PV = 1 4 sin 2 w () m E G F e-e- scattering
20
UC Berkeley Caltech Jefferson Lab Princeton Saclay SLAC Smith College Syracuse UMass Virginia 7 Ph.D. Students 60 physicists Sept 97: EPAC approval 1998-99: Design and Beam Tests 2000: Funding and construction 2001: Engineering run 2002: Physics Runs 1 (Spring), 2 (Fall) 2003: Physics Run 3 (Summer) E158 Collaboration
21
Challenges I. Statistics II. Beam monitoring & resolution III.Beam systematics IV.Backgrounds jitter vs. statistics false asymmetries
22
Spectrometer magnets Concrete shielding target Detector cart Setup in End Station A
25
STATISTICS # electrons per pulse10 7 Rep rate (120 Hz)10 9 Seconds/day10 14 100 days10 16 A ~ 10 -8
26
II. BEAM MONITORING
27
Agreement (MeV) toroid 30 ppm BPM 2 microns energy 1 MeV BPM24 X (MeV) BPM12 X (MeV) Resolution 1.05 MeV Beam Monitoring Correlations
29
III. Beam Asymmetries Polarized source
30
SLOW REVERSALS *Halfwaveplate @ source ~few hours *48 vs. 45 GeV energy ~ few days
31
A PV vs. time ppb
32
IV. BACKGROUNDS *electron-proton elastic scattering *pion production *radiative inelastic electron-proton scattering W 2 > 3 GeV 2 *2 photon events with transverse polarization ******
33
ep Detector Asymmetry
34
Transversely Polarized Beam
35
Run 1: Spring 2002 Run 2: Fall 2002 Run 3: Summer 2003 E158 Physics Runs
36
Run I & II
37
Run I
38
A PV = 175 30 (stat) 20 (syst) ppb sin 2 = 0.2293 ± 0.0024 (stat) ±0.0016 (syst) At Q 2 = 0.027 (GeV/c) 2 …. w RUN I FINAL RESULT MS sin 2 = 0.2311 ± 0.00016 w MS Theory:
39
A PV = 160 21 (stat) 17 (syst) ppb sin 2 = 0.2308 ± 0.0015 (stat) ±0.0014 (syst) At Q 2 = 0.027 (GeV/c) 2 …. w RUN I & II PRELIMINARY MS sin 2 = 0.2311 ± 0.00016 w MS Theory:
40
Q (GeV) sin 2 w Status in 1999
42
0.240 0.238 0.236 0.234 0.232 0.230 1997 1998 1999 2000 Standard Model Cesium Atomic Parity Violation Result vs. Time sin 2 w (Colorado measurement) Modifications in the theoretical corrections to the atomic structure Wieman et al. Bennett Wieman Derevianko Dzuba Flambaum 20012002 Kozlov Porsev Tupitsyn Johnson Bednyhakov Soff Kuchiev Flambaum 2003
43
Q (GeV) sin 2 w Status today Run I & II
44
sin 2 w Q (GeV) Including E158 projections... Run I & II E158 Projected Error bar
45
Beyond Standard Model Implications... *Limit on LL ~ 7 TeV *Limit on Z ~ 400 GeV *Limit on lepton flavor violating coupling ~ 0.02G F Limits will improve with new data
46
Future Measurements
47
LHC Not a parity experiment … Has major impact on precision low energy tests for discovery potential Z’, supersymmetry, compositeness, leptoquarks, etc… in the TeV range
48
SUMMARY *Performed a first measurement of parity violation in e - e - scattering *Future parity experiments active *Complementary to collider experiments Final results in ~ 1/2 year
50
Correctionf bkg f bkg ) A corr (ppb) A corr ) (ppb) Beam first order---3 Beam higher orders---10 Beam spotsize--01 Transverse asymmetry---83 High energy photons0.0040.00233 Synchrotron photons0.00150.000505 Neutrons0.0030.001-53 ep elastic0.0640.007-82 ep inelastic0.0110.003-266 Pions0.0060.00211 TOTAL0.0900.009-4314 Run I Systematics
51
Normalization Factor f (f) Dilutions0.910.01 Polarization0.850.05 Analyzing power1.00.02 Linearity0.990.01 Run I Dilutions
52
Correctionf bkg f bkg ) A corr (ppb) A corr ) (ppb) Beam first order---3 Beam higher orders---15 Beam spotsize--01 Transverse asymmetry---53 High energy photons0.0040.00233 Synchrotron photons0.00150.000502 Neutrons0.0030.001-53 ep elastic0.0530.005-71 ep inelastic0.0090.002-216 Pions0.0060.00211 TOTAL0.0740.008-3017 Run II Systematics
53
Normalization Factor f (f) Dilutions0.910.01 Polarization0.850.05 Analyzing power1.00.02 Linearity0.990.01 Run II Dilutions
54
A PV (Run I) = -176 30 (stat) 20 (syst) ppb (5 significance) A PV (Run II) = -145 28 (stat) 23 (syst) ppb (4 significance) A PV (Run I+II) = -161 21 (stat) 17 (syst) ppb (6 significance) Asymmetry Results
55
Standard Model prediction: 0.2385 ± 0.0006 (Czarnecki, Marciano, 2000) sin 2 eff (Run I) = 0.2353 ± 0.0025 (stat) ±0.0017 (syst) (-1.0 from Standard Model) sin 2 eff (Run II) = 0.2381 ± 0.0023 (stat) ±0.0019 (syst) (-0.1 from Standard Model) sin 2 eff (Run I) = 0.2366 ± 0.0018 (stat) ±0.0014 (syst) (-0.8 from Standard Model) Electroweak Mixing Parameter
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.