Download presentation
Presentation is loading. Please wait.
Published byMarian McBride Modified over 9 years ago
1
Coletto, Lucchese, Orlando, Perego ELECTORAL PREDICTIONS WITH TWITTER: A MACHINE-LEARNING APPROACH M. Coletto 1,3, C. Lucchese 1, S. Orlando 2, and R. Perego 1 1 ISTI-CNR, Pisa 2 University Ca’ Foscari of Venice 3 IMT Institute for Advanced Studies, Lucca May 2015
2
Coletto, Lucchese, Orlando, Perego In this work we study how Twitter can provide some interesting insights concerning the primary elections of an Italian political party. INTRODUCTION 26/05/152
3
Coletto, Lucchese, Orlando, Perego STATE-OF-THE-ART DATA BASELINE METHODS AGE BIAS CONCLUSION AGENDA 26/05/153
4
Coletto, Lucchese, Orlando, Perego Twitter for predictive tasks: from prediction of stock market [1] to movie sales [2], and pandemics detection [3]. Many articles propose quantitative approaches to predict the electoral results in different countries: US [4], Germany [5], Holland [6], Italy [7]. STATE-OF-THE-ART [1] Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computa- tional Science 2(1), 1–8 (2011) [2] Asur, S., Huberman, B.A.: Predicting the future with social media. In: Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on. vol. 1, pp. 492–499. IEEE (2010) [3] Lampos, V., De Bie, T., Cristianini, N.: Flu detector-tracking epidemics on twitter. In: Ma- chine Learning and Knowledge Discovery in Databases, pp. 599–602. Springer (2010) [4] O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: Linking text sentiment to public opinion time series. ICWSM 11, 122–129 (2010) [5] Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with twitter: What 140 characters reveal about political sentiment. ICWSM 10, 178–185 (2010) [6] Sang, E.T.K., Bos, J.: Predicting the 2011 dutch senate election results with twit- ter. In: Proceedings of the Workshop on Semantic Analysis in Social Media. pp. 53–60. Association for Computational Linguistics, Stroudsburg, PA, USA (2012) [7] Caldarelli,G.,Chessa,A.,Pammolli,F.,Pompa,G.,Puliga,M.,Riccaboni,M.,Riotta,G.:A multi-level geographical study of italian political elections from twitter data. PloS one 9(5), e95809 (2014) 26/05/154
5
Coletto, Lucchese, Orlando, Perego 26/05/155
6
Coletto, Lucchese, Orlando, Perego DATA 26/05/156
7
Coletto, Lucchese, Orlando, Perego 26/05/157
8
Coletto, Lucchese, Orlando, Perego Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with twitter: What 140 characters reveal about political sentiment. ICWSM 10, 178–185 (2010) TweetCount DiGrazia, J., McKelvey, K., Bollen, J., Rojas, F.: More tweets, more votes: Social media as a quantitative indicator of political behavior. PloS one 8(11), e79449 (2013) UserCount BASELINE 26/05/158
9
Coletto, Lucchese, Orlando, Perego EVALUATION: -MAE (mean absolute error) -RMSE (root-mean-square error) -MRM (mean rank match) 26/05/159
10
Coletto, Lucchese, Orlando, Perego Proposed classification methods -UserShare -ClassTweetCount -ClassUserCount METHODS 26/05/1510
11
Coletto, Lucchese, Orlando, Perego 26/05/1511
12
Coletto, Lucchese, Orlando, Perego Training correcting factors through ML – Per candidate – Learning weights to evaluate Twitter user/ voters ratio – Metrics: UserShare, ClassTweetCount Content Analysis (100 most frequent hash- tags) – 1 feature per word – Sentiment Analysis per candidate METHODS 2 26/05/1512
13
Coletto, Lucchese, Orlando, Perego 26/05/1513
14
Coletto, Lucchese, Orlando, Perego 26/05/1514
15
Coletto, Lucchese, Orlando, Perego AGE BIAS 26/05/1515
16
Coletto, Lucchese, Orlando, Perego 26/05/1516
17
Coletto, Lucchese, Orlando, Perego New predictors Machine learning approach Age bias analysis LIMITATIONS AND FUTURE WORK Twitter bias Single dataset (European) Arbitrariness (window, keywords,..) CONCLUSION 26/05/1517
18
Coletto, Lucchese, Orlando, Perego THANK YOU QUESTIONS?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.