Download presentation
1
Medical informatics Lecture 1
Introduction to Medical Informatics Definition and scope of HI, medical research to clinical practice lifecycle, electronic patient records
2
The big picture Understanding diseases and their treatment Develop
Standards based formalisation of clinical data and research results Understanding diseases and their treatment Develop and test treatments Patient-specific Decision-making to optimise and personalise treatment Clinical engagement, post-marketing surveillance, data mining Service delivery, performance assessment Ensure right Patients receive right intervention Manage safe workflow, professional communication, security
3
Course objectives Provide an overview of the main development areas in health informatics. Understand the role of informatics in translating medical research into clinical practice Look at 4 key topics in more depth Electronic patient records Formal representation of clinical data and medical knowledge Clinical decision making and decision support Care pathways and workflow management
4
Recommended texts Guide to Health Informatics - Enrico Coiera 2nd edition 2003 From Patient data to Medical Knowledge - Paul Taylor 2006 Other useful resources at
5
Biomedical informatics (1): Bio-informatics
Rapidly developing branch of biology: highly interdisciplinary, using techniques and concepts from IT, statistics, mathematics, chemistry, biochemistry, physics, and linguistics! Seeks knowledge from computer analysis of biological data (e.g. genomics, proteomics) experimental results patient statistics scientific literature. Research in bioinformatics includes development of methods for storage, retrieval, and analysis of data, modeling and simulation of cellular/molecular systems.
6
Biomedical informatics (2): Health-informatics
Also known as medical or clinical informatics It is applied to primary and specialist patient care, nursing, dentistry, pharmacy, public health etc. Deals with the resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of information in delivery of healthcare services A particular focus is on services at the point of care and emphasis is increasingly being placed on informatics for patients and carers as well as professionals.
7
Topics in health informatics (1): traditional perspective
Architectures for electronic medical records and other health information systems used for billing, scheduling, and research Standards (e.g. DICOM, HL7) … to facilitate the exchange of information between healthcare information systems - these specifically define the means to exchange data, not the content Controlled vocabularies … used to allow a standard, accurate exchange of data content between systems and providers Software for specialist services and devices
8
Topics in health informatics (2): new drivers
Quality and safety US Institute of Medicine “To err is human” “Crossing the quality chasm” McGlynn data on service delivery Fineberg lecture on YouTube NHS Emergence of clinical decision support and workflow management systems
9
Topics in health informatics (3): Contemporary multidisciplinary view
Traditional “engineering” topics Hardware and software service architectures Specialist technical services Digital signal processing Human and organisational factors in quality and safety User interface design (Tang lecture on YouTube) Organisational memory Learning from experience Change management Formal representation of data and knowledge Controlled vocabularies, “ontologies” Applying knowledge to data: logic and description logics, decision theory, guidelines and workflows
10
The key challenges (adapted from Coiera p 104)
How do we apply knowledge to achieve a particular clinical objective? How do we decide how to achieve a particular clinical objective? How do we improve our ability to deliver clinical services?
11
Medical research, clinical practice
Understanding diseases and their treatment Develop and test treatments Health Records Service delivery, performance assessment Ensure right Patients receive right intervention
12
First … Health Records Capture your data, accurately, completely
Make the data readily accessible Health Records
13
The paper record, pros Portable Familiar and easy to use
Exploits everyday skills of visual search, browsing etc Natural: “direct” access to clinical data Handwriting Charts, graphs Drawings, images…
14
The paper record: cons Can only be used for one task at a time
If 2 people need notes one must wait Can lead to long waits (unavailable up to 30% of time in some studies) Records can get lost Consume space Large individual records are hard to use Fragile and susceptible to damage Environmental cost
15
Electronic health records
An electronic health record is a repository of information about a single person in a medical setting, including clinical, demographic and other data. The repository resides in a system specifically designed to support users by providing accessibility to complete and accurate data may include services to provide alerts, reminders, links to medical knowledge and other aids to clinical practice.
18
The electronic medical record
19
Examples
20
Functions of the EHR (1) Supports structured data collection using a defined vocabulary. Accessible at any or all times by authorized individuals. Contains a problem list - patient’s clinical problems and current status Supports systematic measurement and recording of data to promote precise and routine assessment of the outcomes of patient care States the logical basis for all diagnoses or conclusions as a means of documenting the clinical rationale for decisions about the management of the patient’s care.
21
Functions of the EHR (2) Can be linked with other clinical records of a patient—from various settings and time periods—to provide a longitudinal (i.e. lifelong) record of events that may have influenced a person’s health. Can assist the process of clinical problem solving by providing clinicians with decision analysis tools, clinical reminders, prognostic risk assessment and other clinical aids. Can be linked to both local and remote databases of knowledge, literature and bibliography or administrative databases and systems so that such information is readily available to assist practitioners in decision making. Addresses patient data confidentiality. Can help practitioners and health care institutions manage the quality and costs of care.
22
Electronic health records: pros
Compact Simultaneous use Easily copied/archived Portable (handheld and wireless devices) Secure Supports many other services Decision support Workflow management Performance audits Research
23
Electronic health records: cons
High capital investment Hardware, software, operational costs Transition from paper to computer Training requirements Power outs – the whole system goes down! Continuing security debate Stealing one paper record is easy, 20 is harder, 10,000 effectively impossible – the security risks are very different for electronic data
24
Views of record systems
25
Ad hoc view
26
User view
27
Service architecture view
Chronic care services Acute services Primary Care services Communication & Coordination services Point of care services Search and analysis services Clinical data “Organisational Memory” Federated EHR Terminologies Ontologies Clinical guideline repository Clinical trials repository
28
Functional view
29
Medical record structures (1)
Integrated record Data are recorded and presented chronologically around episodes of care, following the sequence of events, encounters and actions associated with the patient’s medical needs. Source oriented record organized around the organization of the healthcare service, with separate sections for medical notes, nursing notes, laboratory data, radiological results etc. No concept of a clinical task or process in this form of data recording.
30
Medical record structures (2)
Protocol-oriented record Often used when a patient is being treated according to a standard treatment plan or pathway. Highly task- oriented, providing useful guidance for what needs to be done at any point in treatment, but providing little overview of the patient’s needs. Problem-oriented record Organised around a list of the patient’s medical problems, which is used to index the whole record, and an integrated treatment plan. The plan describes what is to be done for each problem, with all associated progress notes, lab tests, medications etc linked to the initiating problem.
31
Point of care services Clinical documentation Patient administration
Search services Decision support Workflow management Communication and coordination
32
“Grand Challenge” The NHS of the future?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.