Download presentation
Presentation is loading. Please wait.
Published byCurtis Edwin Garrett Modified over 9 years ago
1
Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells Assunta Marrocchi,* Daniela Lanari,Antonio Facchetti and Luigi Vaccaro* Energy Environ. Sci., 2012, 5, 8457-8474 Teacher: Guey-Sheng Liou Student: Yu-Ting Huang Date:2013/11/15 1
2
Outline Introduction Metal-assisted cross-coupling reactions Nickel-catalyzed coupling polymerization Palladium-catalyzed coupling polymerizations Oxidative coupling polymerization BHJ photovoltaic cells incorporating regioregular P3HTs Conclusions 2
3
Introduction 3
4
4 Solar Cells Solar cell Silicon Crystalline Amorphous Single crystalline Poly crystalline Compound Ш- Ѵ (GaAs, InP) II- Ѵ I (CdS, CdTe) Organic Dye-sensitized OSCs
5
5 Advantages of Organic Solar Cells (1)Manufacturing Process & Cost (2)Tailoring Molecular Properties (3)Desirable Properties (4)Environment Impact (5)Multiple Uses and Applications
6
6 Characterization of a Solar Cell 開路電壓 (open circuit voltage, V oc ) 短路電流 (short circuit current, J sc ) 填充因子 (fill factor, FF) 光電轉換效率 (power conversion efficiency, PCE ) Angew. Chem. Int. Ed., 2012, 51, 2020
7
Angew. Chem. Int. Ed. 2012, 51, 2020 – 2067 7 Device structure Planar Heterojunction (PHJ) Bulk Heterojunction (BHJ)
8
Donor and Acceptor Donor : PCBM Acceptor:P3HT 8
9
Metal-assisted cross-coupling reactions 9
10
Nickel-catalyzed coupling polymerization 10
11
Enhanced Electrical Conductivity in Regioselectively Synthesized Poly(3-al kylthiophenes) R. D. McCullough, R. D. Lowe, M. Jayaraman and D. L. Anderson J. Org. Chem., 1993, 58, 904 11 98 %HT P3HT(Mn=12 200 g mol -1, PDI~1.9), yield 36 %
12
The First Regioregular Head-to-Tail Poly( 3- hexylthiophene-2,5-diyl) and a Regiorandom Isopolymer: Ni vs Pd Catalysis of 2( 5)-Bromo-5( 2)- (bromozincio) -3-hexylthiophene Polymerization Tian-An Chen and Reuben D. Rieke* J. Am. Chem. SOC. 1992, 114, 10087-10088 12 98 %HT P3HT(Mn=37 680 g mol -1, PDI=1.48), yield 82 %
13
Regioregular, Head-to-Tail Coupled Poly(3- alkylthiophenes) Made Easy by the GRIM Method: Investigation of the Reaction and the Origin of Regioselectivity Robert S. Loewe, Paul C. Ewbank, Jinsong Liu, Lei Zhai, and Richard D. McCullough* Macromolecules 2001, 34, 4324-4333 13 ~99 %HT P3HT(Mn=20 000- 35 000g mol -1, PDI=1.2-1.4), yield 71 % GRIM
14
Chain-Growth Polymerization for Poly(3-hexylthiophene) with a Defined Molecular Weight and a Low Polydispersity Akihiro Yokoyama, Ryo Miyakoshi, and Tsutomu Yokozawa* Macromolecules 2004, 37, 1169-1171 14 >98 %HT P3HT(Mn=31 700 g mol -1, PDI=1.36), yield 78 %
15
Extremely regio-regular poly (3-alkylthiophene)s from simplified chaingrowth Grignard metathesis polymerisations and the modification of their chain-ends Roger C Hiorns, ∗ Abdel Khoukh, Benoit Gourdet and Christine Dagron-Lartigau Polym Int, 2006,55,608–620 15 100%HT P3HT(Mn=33 400 g mol -1, PDI=1.12), yield 37-48 %
16
Purification-Free and Protection-Free Synthesis of Regioregular Poly(3-hexylthiophene) and Poly(3-(6-hydroxyhexyl)thiophene) Using a Zincate Complex of t-Bu 4 ZnLi 2 Tomoya Higashihara,* Eisuke Goto, and Mitsuru Ueda ACS Macro Lett., 2012, 1, 167 16 >90 % HT P3HT(Mn=25 000-307 000 g mol -1, PDI<1.2), yield 80-90%
17
Palladium-catalyzed coupling polymerizations 17
18
Synthesis and characterisation of telechelic regioregular head-to-tail poly(3-alkylthiophenes) Ahmed Iraqi* and George W. Barker J. Mater. Chem., 1998, 8, 25–29 18 >96 % HT P3HT(Mn=10 000-16 000 g mol -1, PDI=1.2-1.4), yield 10-50 %
19
Tris[tri(2-thienyl)phosphine]palladium as the Catalyst Precursor for Thiophene-Based Suzuki-Miyaura Crosscoupling and Polycondensation WEIWEI LI, YANG HAN,1BINSONG LI, CAIMING LIU, ZHISHAN BO* J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 4556 19 97 % HT P3HT(Mn=26 000 g mol -1, PDI=2.3), yield 72 %
20
Palladium-Catalyzed Dehydrohalogenative Polycondensation of 2-Bromo-3-hexylthiophene: An Efficient Approach to Head-to-Tail Poly(3-hexylthiophene) Qifeng Wang, Ryo Takita, Yuuta Kikuzaki, and Fumiyuki Ozawa* J. Am. Chem. Soc., 2010, 132, 11420-11421 20 Herrmann’s catalyst 98 % HT P3HT(Mn=30 600 g mol -1, PDI=1.6), yield 99%
21
Oxidative coupling polymerization 21
22
Head-to-Tail Regioregularity of Poly(3- hexylthiophene) in Oxidative Coupling Polymerization with FeCl3 S. Amou, O. Haba, K. Shirato, T. Hayakawa, M. Ueda*, K. Takeuchi and M. Asai, J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 1943. 22 89 % HT P3HT(Mn=38 000 g mol -1, PDI=2), yield 62% Long time(200 h) 88 % HT P3HT(Mn=68 000 g mol -1, PDI=1.9), yield 100%
23
Synthesis Of Poly(3 hexylthiophene) by Using the VO(acac)2-FeCl3-O2 Catalyst System S. Yu, T. Hayakawa and M. Ueda, Chem. Lett., 1999, 559-560. 23
24
BHJ photovoltaic cells incorporating regioregular P3HTs 24
25
Effect of the regioregularity of poly(3- hexylthiophene) on the performances of organic photovoltaic devices 25 77 %HT P3HT(Mn=20400 g mol -1, PDI=2.8) 97 %HT P3HT(Mn=20600 g mol -1, PDI=1.2)
26
Influence of the Molecular Weight of Poly(3- hexylthiophene) on the Performance of Bulk Heterojunction Solar Cells Pavel Schilinsky,,§ Udom Asawapirom, Ullrich Scherf, Markus Biele, and Christoph J. Brabec Chem. Mater. 2005, 17, 2175-2180 26
27
Conclusions 27
28
Regioregularity of P3HT is known to be one of the key parameters affecting the related solar cells performance, and critically depend on the regioselectivity of the synthetic approaches to conducting P3HT. Intensive studies have also revealed that the regioregular polymerization of P3HT proceeds via a chain-growth mechanism and may also exhibit living characteristics. This feature allows for the precise control of the polymer molecular weight and polydispersity, which were found to be, in turn, critical parameters modulating polymer electronic, optical, electrochemical properties, and solid- state packing, therefore influencing the OPV device performance 28
29
29
30
30
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.