Download presentation
1
Installation and testing
Titelseite September 2013
2
Safety Potential sources of risk: Active component (Laser)
Injury of eyes and skin Fiber stub (cleaved fiber) Consumables Chemicals and its vapor
3
Cable deployment Indoor Outdoor Latter buried aerial under water
Duct direct direct Conduit Duct
4
Installation methodology
Installation methodology depends on type of cable, distance, application and environment wrapped laying pulling blowing aerial
5
Cable storage Storage Cable and accessories Installation
Temperature accor. data sheet Pulling force accor. data sheet Crush resistance accor. data sheet Bending radius accor. data sheet Mehr Infos in den Installations- und Testrichtlinien (Grantieprogramm)
6
Connector cleaning source:JDSU Finger print Contamination Clean
7
End face Small parts on the fiber core cause significant return loss (RL) and insertion loss (IL) Contamination Light (RL) (IL)
8
Cleaning – Ferrule/end face
Contaminated end face / fiber core impress of dust parts when connecting Permanent damage on fiber core
9
Cleaning - Sleeve Contaminated sleeve Dust pushed during plug in
of connector Dust ring on ferrule and potentially fiber core
10
Testing Titelseite September 2011
11
Inspection/verification test
Equipment Power Meter & Light source OTDR Fiber/Connector inspection Visual fault locator Total optical loss Reflection Link characteristic Visuelle inspection
12
Visual inspection Connector Contamination Damage Identification
Fiber break Bending Faulty connection
13
Measurement principales
Power meter Light source Power Meter Power Meter Light source Stecker Stecker Rückstreumessung (OTDR) OTDR OTDR Stecker Stecker
14
Power budget calculation OF-500
Connection Splice 200 m 50 m 250 m PMD Component ISO11801 “state of the art” Fiber OM3 3.5db/km 1.75dB 2.8dB/km) 1.40dB Connector 0.75dB/Steck 2.25dB 0.5dB/Steck 1.50dB Fusion splice 0.3dB/Spl 0.30dB 0.1dB/Spl 0.10dB Dämpfung Gesamt 4.30dB 3.00dB Berechnung Dämpfungswert OM3 bei 850nm Channel attenuation for OF-500 at 850nm -> 3.25dB
15
Power measurement – level setting
1. Reference measuring Transmitter Test cable 1 Receiver Test cable 2 Adjust: Attenuation = 0 dB
16
Power measurement – link evaluation
2. Measuring the system’s attenuation Transmitter Receiver LWL - Anlage Total attenuation [dB] Test result Attenuation = 2.1 dB
17
Power measurement testing
Methodology according ISO/IEC C Licht quelle S Launch cable Power meter D Test Jumper Methodology 3 - Kanal Methodology 1 - CP Methodology 2 - PL Depending on the reference measurement (1, 2 or 3 test jumper) a different result will be achieved. ISO/IEC Methode 2 is equal to EN50346 – Methode 1
18
Error reduction: Mandrel wrap principle
50 m mandrel 18 mm for 3 mm jumpers 62.5 m mandrel 20 mm for 3 mm jumpers 9 m N.A. Test jumper length 1 m to 5 m 5 wraps Launch cord Mandrel This “mode filter” causes high bend loss in loosely coupled modes and low loss in tightly coupled modes. Thus the mandrel removes all loosely coupled modes generated by an overfilled launch in a short (cords) link used during the reference setting Mandral wrap may reduce the insertion loss by: up to 0.5dB – 62.5 m up to 0.9dB – 50 m
19
Optical Time Domain Reflectometer OTDR
Impuls- generator Light source Beam splitter LWL t bei der OTDR Messung wird ein Laserpuls der Dauer von 3ns bis 20µs in einen Lichtwellenleiter eingekoppelt und das Rückstreulicht über der Zeit gemessen Measuring delay Receiver Evaluation optical Signal electrical Signal
20
OTDR measuring Rayleigh scattering and Fresnel reflections
A light pulse propagates in an optical waveguide. OTDR The light pulse is partly reflected by an interfering effect. OTDR OTDR The reflected light pulse is detected by the OTDR. bei der OTDR Messung wird ein Laserpuls der Dauer von 3ns bis 20µs in einen Lichtwellenleiter eingekoppelt und das Rückstreulicht über der Zeit gemessen Rayleigh scattering and Fresnel reflections
21
An example of an OTDR waveform
Fusion- Connector Fiber Mech. Fiber- splice bend splice end OTDR Attenuation (dB) Distance (km)
22
OTDR Pulse length in fiber
OTDR pulse width OTDR Pulse length in fiber OTDR Pulse Larger pulse width: More power, larger dynamic range Shorter pulse width: better resolution, dynamic range reduced due to more incidents recognized. Pulsweite beeinflußt Ereignis-Totzonen Ein von OTDR ausgesendeter Puls hat eine entsprechende physikalische Länge (Energiegehalt) Solange die Pulslänge kürzer ist als der Abstand zwischen einem Ergeignis und dem ihm folgenden, kann das folgende Ereignis detektiert werden (Ereignis-Totzone) Kürzere Pulse haben aber weniger Energie und die effektive Dynamik wird dadurch reduziert Es gilt die optimale Mittelung für beide Gegebenheiten zu finden
23
Dynamic range of an OTDR
PMAX Backscatter level at OTDR test port dB Dynamic Range Measurement Range Noise floor km
24
Attenuation- & event dead zone OTDR
Ideal trace of a reflected event with shortest pulse width, PMIN 1.5 dB Measured OTDR trace 0.5 dB PMIN Event dead zone Attenuation dead zone
25
Power measuring with OTDR
Test set up FO system under test 1) 2) 1) launching fiber 2) launching fiber 200 m m for MM m – 500 m for MM 500 m - 1’000 m for SM m - 1’000 m for SM
26
(1) Connection (Loss 0.4 dB) (1) Connection (Loss 0.4 dB)
Reading an OTDR Trace Launch Cable Horizontal Segment Backbone Segment Receive Cable Link being tested OTDR Trace Patch Cord Splice (1) Connection (Loss 0.4 dB) A B -1 (1) Connection (Loss 0.4 dB) Backbone Segment Horiz. Seg. (2) Connections (Loss 0.8 dB) Link Loss ( 2.1 dB) Relative Power (dB) -2 OTDR screen Splice (Loss 0.1 dB) -3 Rcv. Cable Launch Cable -4 Link Length ( 130 m) 250 50 100 150 200 Distance (m)
27
Other FO measurements Bandbreite
The bandwidth is measured by the manufacturer of the fiber and guaranteed. Some cable manufacturer test this occasionally. There is no point to test in the field or it is very expensive. Polarisationsmoden Dispersion (PMD) Only for Single mode application Channel length > 2 km
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.