Download presentation
Published byRandolf Lawson Modified over 9 years ago
1
Analysis of causes and development of a prediction methodology
Radon in groundwater Analysis of causes and development of a prediction methodology Skeppström K. PhD. Student Dept. of Land and Water Resources Engineering, KTH
2
Layout of presentation
Radon (focus of Rn in groundwater) Objective of project / Phases involved Methodology Results & Discussions
3
Radon Radioactive Colourless, odourless, noble gas
Exists as 3 main isotopes: 222Rn (uranium decay series, 238U),Half-life ( T1/2) = 3.8 days 220Rn (Thorium decay series, 232Th), T1/2 = 56 seconds 219Rn (Actinium decay series, 235U), T1/2 = 4 seconds Cancer risk 500 cases of lung cancer/year in Sweden; smokers have a higher risk. Risk of developing of other cancers ?
4
Uranium decay series 238U (parent) 222Rn 206Pb (stable) 226Ra 218Po
214Bi 238U (parent) 214Po 234Th 210Pb 234Pa 210Bi 234U 210Po + 206Pb (stable) 230Th +
5
Principal cause of radon problem
Geology
6
Genomsnittlig årlig stråldos i Sverige
Source: Statens Strålskyddsinstitut
7
Exposure routes groundwater Construction material
Soil gas / bedrock (Granite) groundwater
8
Regulatory limits (Sweden)
Radon in water Radon in air Radon > 1000 Bq/l Gränsvärde för otjänligt Radon: 400 Bq/m3 Riktvärde för radon i befintliga bostäder Radon > 100 Bq/l Gränsvärde för tjänligt med anmärkning Radon: 200 Bq/m3 Gränsvärde för radon i nya bostäder
9
Radon problems in water
Surface water Groundwater Dug wells (soil/sand aquifer) Drilled wells (Hard rocks)
10
How radon in water is a problem?
1000 Bq/l in water 100 Bq/m3 in air Dish washing 95 % Shower 60 – 70 % Bath 30 – 50 % Washing machine 90 – 95 % Tap water 10 – 45 % WC 30 %
11
Radon in water - Radon emanated in mineral grain escape in the pore space Recoil Theory Prerequisites Presence of parent elements, 238U or 226Ra Transport mechanisms Diffusion Convection Pore space filled with water- Radon dissolves in the water Dosimetry 1000 Bq/l is dangerous Water extracted from drilled wells (fracture water) How is it a problem ?
12
Precipitation of 238U 234U, 230Th, 226Ra from water to surface of fracture
Leaching of 238U and 234U Emanation of 222Rn Content of 238U in the rock: 10ppm 222 Rn Concentration of 222Rn in Bedrock: 0.33Bq/m3 rocks Concentration of 222Rn in groundwater: 5 milj Bq/m3
13
Radon Emanation Radium atom Radon atom Mineral grain Pore
14
Radon risk in Sweden Groundwater radon risk map of Sweden
(after Åkerblom & Lindgren, 1997)
15
(Knutsson & Olofsson, 2002)
16
Any deduction? not always the case
Granite types of rocks with high uranium concentration High radon concentration in water not always the case
17
Hypothesis of project The hypothesis stipulates that the occurrence of radon from groundwater is governed by a number of well-defined factors ranging from: Geological (bedrock, soil, tectonic structures, flow pattern and surrounding environment) Chemical (oxidation reaction, other processes in water) Topographical (difference in elevation and slope that determine flow pattern and renewal tendency and frequency) Technical (withdrawal system & frequency which determine circulation as well as ventilation possibilities.
18
Purpose of research Map processes and factors influencing radon content in groundwater Develop a prediction model, based on statistics, that can be used to determine areas at risk.
19
Study area
20
Phases of the project Phase 1 Phase 2 Phase 3
Using GIS and multivariate analysis of data to assess factors affecting radon concentration – REGIONAL LEVEL Phase 1 Detailed study at Ljusterö to determine spatial & temporal variation of radon concentrations due to a range of factors. LOCAL SCALE Phase 2 Development of risk prediction model Phase 3
21
Phase 1 Data collection from:
Swedish National Land Survey (elevation and landuse data) Swedish Geological Survey, SGU (soil & bedrock geology, fractures, radiometric) Municipalities (data about wells and radon content) Data transformation and extraction using ArcGIS and its spatial analyst function Statistical analyses including multivariate analysis of data.
22
Factors considered Elevation Derived factors Soil geology
Bedrock Fracture zone Landuse Uranium content Variables Derived factors Altitude difference Predominant soil, bedrock, landuse within a certain vicinity e.g. 200 m Slope of the terrain
23
Geographical Information System (GIS)
GIS is a computer system for managing spatial data. Purpose of GIS Organisation Visualisation Spatial Query Combination Analysis Prediction
24
Visualisations with GIS
Bedrocks Soil
25
What is my objective? For each well, relevant spatial patterns need to be extracted from the factor maps To generate continuous surfaces with a spatial resolution of 50 m + Derive factors Data obtained in different formats, e.g ASCII, point vector GIS Software: ArcMap Spatial analyst function Geostatistical software Ultra edit software
26
Methodology using GIS
27
Statistical methods Which method?
Relate radon concentration with a large number of variables Variables are both qualitative and quantitative in nature Non-normal distribution of many variables Use of covariance and correlations ? Careful with the interpretations Not much information about association between variables Non-linear associations can exist Very sensitive to ‘ wild observations- outliers ’
28
Statistical Analyses Use of multivariate analysis of data
Each observational unit is characterised by several variables. It enables us to consider changes in several properties simultaneously Non normality of data (non parametrical tests) Statistical Methods Analysis of variance Principal Component Analysis (PCA)
29
PCA method Eigenvectors of a variance-covariance matrix
Linear combinations of these variables Its general objectives: Data reduction (A small amount of k components account for much of the variability of the data) Interpretation (may reveals relationships that were not previously suspected)
30
Results of statistical analyses
31
Descriptive Statistics
Statistic parameters Number of wells 4439 Minimum radon concentration (Bq/l) 4.0 Maximum radon concentration (Bq/l) 63560 Mean radon concentration (Bq/l) 492 Median value 230 Variance Standard deviation 1227
32
Radon concentrations in Stockholm County
33
Boxplot Median 25%-75% Non-outlier range
34
ANOVA - Altitude
35
Anova - Relative altitude
36
ANOVA-Bedrock
37
ANOVA- Fracture
38
ANOVA - Soil
39
ANOVA- Landuse
40
ANOVA- Uranium
41
Summary of results High radon concentration in drilled wells is related to: Low altitude Granite rocks Close distance to fracture When overlying geology is lera/silt Infrequent use of wells (summer houses) An overview of the terrain in the surrounding of the wells (flat or hilly) is also of interest in connection to groundwater flow tendencies and speed of flow.
42
Risk Variable Method Preparation Phase (Expert system)
Data collection Statistical analyses Expert assessment Selection of significant variables Determination of risk values Determination of uncertainty values Suming up risk and uncertainty values Final Risk Evaluation Preparation Phase (Expert system) Operational phase (User Interface) Define study area
43
Risk Variable Modelling (RVM)
V1 x R1 + V2 x R2 + V3 x R3 + ……….+ Vn x Rn = FRV FRV = Final risk value Where Vi= a risk value for a specific variable (-2 to +2) Ri = the rating of the variable (1 to 3)
45
Distance from fracture
Ratings after RVM Altitude 2 Soil Uranium 3 Landuse Bedrock Distance from fracture
46
An example of a risk map
47
Field Studies
48
Field studies at Ljusterö
Why Ljusterö? Number of wells = 198 141 wells exceeding 500 Bq/l (71%) 96 wells exceeding 1000 Bq/l (48%) Radon concentration Mean = 1942 Bq/l Minimum = 50 Bq/l Maximum = Bq/l
49
Wells on ljusterö predominant geology is gnejsgranitoid
50
What was done? To choose 3-4 study areas on Ljusterö, exhibiting drastic fluctuations in the radon concentration and to perfom detailed study at these locations
51
Detailed study Analysis of geology (bedrock type, fracture zones, tectonic zones and fracture filling minerals, soil type and soil depth) Altitude and other terrain considerations Analysis of technical factors (wells technical design, hauling system, spatial temporal extraction patterns of wells) Radiometric measurements of radiation (from soil around wells as well as measurements of radiation in wells and in tap water) Chemical analyses in water samples (U, Ra, Rn, fluoride and other water components)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.