Presentation is loading. Please wait.

Presentation is loading. Please wait.

Speech & Audio Processing - Part–II Digital Audio Signal Processing Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven homes.esat.kuleuven.be/~moonen/

Similar presentations


Presentation on theme: "Speech & Audio Processing - Part–II Digital Audio Signal Processing Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven homes.esat.kuleuven.be/~moonen/"— Presentation transcript:

1 Speech & Audio Processing - Part–II Digital Audio Signal Processing Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be homes.esat.kuleuven.be/~moonen/

2 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 2 Speech & Audio Processing Part-I (H. Van hamme) speech recognition speech coding (+audio coding) speech synthesis (TTS) Part-II (M. Moonen): Digital Audio Signal Processing microphone array processing noise-,echo-, feedback- cancellation (de)reverberation active noise control, 3D audio PS: selection of topics

3 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 3 Digital Audio Signal Processing Aims/scope Case study: Hearing instruments Overview Prerequisites Lectures/course material/literature Exercise sessions/project Exam

4 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 4 Aims/Scope Aim is 2-fold : Speech & audio per se S & A industry in Belgium/Europe/… Basic signal processing theory/principles : Optimal filters Adaptive filter algorithms (APA, Filtered-X LMS,..) Kalman filters (linear/nonlinear) etc...

5 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 5 1921 2007 (Oticon) Case Study: Hearing Instruments 1/12  Hearing Aids (HAs) Audio input/audio output (`microphone-processing-loudspeaker’) ‘Amplifier’, but so much more than an amplifier!! History: Horns/trumpets/… `Desktop’ HAs (1900) Wearable HAs (1930) Digital HAs (1980) State-of-the-art: MHz’s clock speed Millions of arithmetic operations/sec, … Multiple microphones

6 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 6 Alessandro Volta 1745-1827 © Cochlear Ltd Case Study: Hearing Instruments 2/12 Electrical stimulation for low frequency Electrical stimulation for high frequency  Cochlear Implants (CIs) Audio input/electrode stimulation output Stimulation strategy + preprocessing similar to HAs History: Volta’s experiment… First implants (1960) Commercial CIs (1970-1980) Digital CIs (1980) State-of-the-art: MHz’s clock speed, Mops/sec, … Multiple microphones  Other: Bone anchored HAs, middle ear implants, … Intra-cochlear electrode

7 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 7 Hearing loss types: conductive sensorineural mixed One in six adults (Europe) …and still increasing Typical causes: aging exposure to loud sounds … Case Study: Hearing Instruments 3/12 [Source: Lapperre]

8 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 8 Hearing impairment : Dynamic range & audibility Normal hearing Hearing impaired subjects subjects Case Study: Hearing Instruments 4/12 Level 100dB 0dB

9 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 9 Hearing impairment : Dynamic range & audibility Dynamic range compression (DRC ) (…rather than `amplification’) Case Study: Hearing Instruments 5/12 Level 100dB 0dB Input Level (dB) Output Level (dB) 0dB100dB 0dB 100dB Design: multiband DRC, attack time, release time, …

10 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 10 Hearing impairment : Audibility vs speech intelligibility Audibility does not imply intelligibility Hearing impaired subjects need 5..10dB larger signal-to-noise ratio (SNR) for speech understanding in noisy environments Need for noise reduction (=speech enhancement) algorithms: State-of-the-art: monaural 2-microphone adaptive noise reduction Near future: binaural noise reduction (see below) Not-so-near future: multi-node noise reduction (see below) Case Study: Hearing Instruments 6/12 SNR 20dB 0dB 30 50 70 90 Hearing loss (dB, 3-freq-average)

11 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 11 HA technology requirements Small form factor (cfr. user acceptance) Low power: 1…5mW (cfr. battery lifetime ≈ 1 week) Low processing delay: 10msec (cfr. synchronization with lip reading) DSP challenges in hearing instruments Dynamic range compression (cfr supra) Dereverberation: undo filtering (`echo-ing’) by room acoustics Feedback cancellation Noise reduction Case Study: Hearing Instruments 7/12

12 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 12 DSP Challenges: Feedback Cancellation Problem statement: Loudspeaker signal is fed back into microphone, then amplified and played back again Closed loop system may become unstable (howling) Similar to feedback problem in public address systems (for the musicians amongst you) Case Study: Hearing Instruments 8/12 Model F - Similar to echo cancellation in GSM handsets, Skype,… but more difficult due to signal correlation

13 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 13 DSP Challenges: Noise reduction Multimicrophone ‘beamforming’, typically with 2 microphones, e.g. ‘directional’ front microphone and ‘omnidirectional’ back microph one Case Study: Hearing Instruments 9/12 “filter-and-sum” the microphone signals

14 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 14 Binaural hearing: Binaural auditory cues ITD (interaural time difference) ILD (interaural level difference) Binaural cues (ITD: f 2000Hz) used for Sound localization Noise reduction =`Binaural unmasking’ (‘cocktail party’ effect) 0-5dB Case Study: Hearing Instruments 10/12 ITD ILD signal

15 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 15 Binaural hearing aids Two hearing aids (L&R) with wireless link & cooperation Opportunities: More signals (e.g. 2*2 microphones) Better sensor spacing (17cm i.o. 1cm) Constraints: power/bandwith/delay of wireless link..10kBit/s: coordinate program settings, parameters,…..300kBits/s: exchange 1 or more (compressed) audio signals Challenges: Improved localization through cue preservation Improved noise reduction + benefit from binaural unmasking Signal selection/filtering, audio coding, synchronisation, … Case Study: Hearing Instruments 11/12

16 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 16 Future: Multi-node noise reduction – sensor networks Case Study: Hearing Instruments 12/12

17 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 17 Overview General speech communication set-up : - background ‘noise’  noise suppression, source separation - far-end echoes  acoustic echo cancellation - reverberation  de-reverberation/deconvolution Applications : teleconferencing/teleclassing hands-free telephony hearing aids, etc..

18 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 18 Overview : Lecture-2 Microphone Array Processing Spatial filtering - Beamforming Fixed vs. adaptive beamforming Example filter-and-sum beamformer : Application: hearing aids

19 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 19 Overview : Lecture-3 Noise Reduction ` microphone_signal[k] = speech[k] + noise[k]’ Single-microphone noise reduction –Spectral Subtraction Methods (spectral filtering) –Iterative methods based on speech modeling (Wiener & Kalman Filters) Multi-microphone noise reduction –Beamforming revisited –Optimal filtering approach : spectral+spatial filtering

20 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 20 Overview : Lecture-4 Acoustic Echo Cancellation Adaptive filtering problem: non-stationary/wideband/… speech signals non-stationary/long/… acoustic channels Adaptive filtering algorithms AEC Control AEC Post-processing Stereo AEC

21 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 21 Overview : Lecture-5 Acoustic Feedback Cancellation Ex: Hearing aids Ex: PA systems correlation between filter input (`x ’) and near-end signal (‘ n ’) fixes : noise injection, pitch shifting, notch filtering,... amplifier

22 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 22 Overview : Lecture-6 Reverb & De-reverberation ` microphone_signal[k] = filter*speech[k] (+ noise[k]) ’ Reverb = effect of acoustic channel in between speaker and microphone(s) Reverb has an impact on coding, speech recognition, etc. Single-microphone de-reverberation –Cepstrum techniques Multi-microphone de-reverberation: –Estimation of acoustic impulse responses –Inverse-filtering method –Matched filtering

23 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 23 Overview : Lecture-7 Active Noise Control Solution based on `filtered-X LMS’ Application : active headsets/ear defenders

24 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 24 Overview : Lecture-7 bis 3D Audio & Loudspeaker Arrays Binaural synthesis …with headphones head related transfer functions (HRTF) …with 2+ loudspeakers (`sweet spot’) crosstalk cancellation

25 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 25 Overview : Lecture-8 Case Study: Signal Processing in Cochlear Implants 1Hr lecture by Cochlear LtD To be scheduled

26 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 26 Aims/Scope (revisited) Aim is 2-fold : Speech & audio per se Basic signal processing theory/principles : Optimal filtering / Kalman filters (linear/nonlinear) here : speech enhancement other : automatic control, spectral estimation,... Advanced adaptive filter algorithms here : acoustic echo cancellation other : digital communications,... Filtered-X LMS here : 3D audio other : active noise/vibration control

27 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 27 Lectures Lectures: 7*2hrs + 1*1hr –PS: Time budget = (15hrs)*4 = 60 hrs Course Material: Slides –Use version 2013-2014 ! –Download from DASP webpage http://homes.esat.kuleuven.be/~dspuser/dasp/

28 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 28 Prerequisites H197 Signals & Systems (JVDW) HJ09 Digital Signal Processing (I) (PW) signal transforms, sampling, multi-rate, DFT, … HC63 DSP-CIS (MM) filter design, filter banks, optimal & adaptive filters

29 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 29 Literature Literature (General) (available in DSP-CIS library) Simon Haykin `Adaptive Filter Theory’ (Prentice Hall 1996) P.P. Vaidyanathan `Multirate Systems and Filter Banks’ (Prentice Hall 1993) Literature (specialized) (some available in DSP-CIS library) S.L. Gay & J. Benesty `Acoustic Signal Processing for Telecommunication’ (Kluwer 2000) M. Kahrs & K. Brandenburg (Eds) `Applications of Digital Signal Processing to Audio and Acoustics’ (Kluwer1998) B. Gold & N. Morgan `Speech and Audio Signal Processing’ (Wiley 2000)

30 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 30 Exercise Sessions/Project Acoustic source localization –Direction-of-arrival estimation –Noise reduction –Echo cancellation –Simulated set-up Direction-of-arrival θ

31 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 31 Runs over 4 weeks (non-consecutive) Each week –1 PC/Matlab session (supervised, 2.5hrs) –2 ‘Homework’ sesions (unsupervised, 2*2.5hrs) PS: Time budget = 4*(2.5hrs+5hrs) = 30 hrs ‘Deliverables’ after week 2 & 4 Grading: based on deliverables, evaluated during sessions TAs: guiliano.bernardi@esat (English+Italian) alexander.bertrand@esat (English+Dutch) PS: groups of 2 Acoustic Source Localization Project

32 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 32 Work Plan –Week 1: Design Matlab simulation set-up –Week 2: Direction-of-arrival (DoA) estimation *deliverable* –Week 3: DoA estimation + noise reduction –Week 4: DoA estimation + echo cancellation *deliverable* Acoustic Source Localization Project..be there !

33 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 33 Oral exam, with preparation time Open book Grading 7 for question-1 7 for question-2 +6 for project ___ = 20 Exam

34 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 34 Oral exam, with preparation time Open book Grading 7 for question-1 7 for question-2 +6 for question-3 (related to project work) ___ = 20 September Retake Exam

35 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 35 Website 1)TOLEDO 1)http://homes.esat.kuleuven.be/~dspuser/dasp/ Contact: guiliano.bernardi@esat Slides (use `version 2013-2014’ !!) Schedule DSP-library FAQs (send questions to marc.moonen@esat)marc.moonen@esat

36 Digital Audio Signal Processing: Introduction Version 2013-2014 Lecture-1: Introduction p. 36 Questions? 1)Ask teaching assistant (during exercises sessions) 2)E-mail questions to teaching assistant or marc.moonen@esat 3) Make appointment marc.moonen@esat ESAT Room 01.69


Download ppt "Speech & Audio Processing - Part–II Digital Audio Signal Processing Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven homes.esat.kuleuven.be/~moonen/"

Similar presentations


Ads by Google