Download presentation
Presentation is loading. Please wait.
Published byNoel Hodges Modified over 9 years ago
1
Calibration Mike Smith, Victor Koren, Zhengtao Cui, Seann Reed, Fekadu Moreda DOH Science Conference July 17, 2008
2
HL-RDHM SAC-SMA, SAC-HT Channel routing SNOW -17 P, T & ET surface runoff rain + melt Flows and state variables base flow Hillslope routing SAC-SMA Channel routing P& ET surface runoff rain Flows and state variables base flow Hillslope routing AWIPS DHM Mods Auto Calibration DHM-TF ForecastingCalibration (Forecast) ICP Current Status
3
Manual and Auto Calibration Adjustment of parameter scalar multipliers Use manual and auto adjustment as a strategy Start with hourly lumped calibration Model parameters optimized in auto calb: –SAC-SMA –Hillslope and channel routing –Snow-17 Search algorithms –Simple local search Objective function: Multi-scale Limited to headwater basins
4
48 56 3262 42 3044 40 44 42 32 36 42 40 24 28 1631 21 1522 20 22 21 16 18 21 20 Multiply each grid value by the samescalar factor. x 2 = Calibrate distributed model byuniformlyadjusting all grid values of each model parameter (i.e., multiply each parameter grid value by the same factor) 1.Manual: manually adjust thescalarfactors to get desired hydrograph fit. 2.Auto: use auto-optimization techniques to adjust scalar factors. Example:I th parameter out of N total model parameters Calibration Approach Preserve Spatial Pattern of Parameters
5
HL-RDHM SAC-SMA, SAC-HT Channel routing SNOW -17 P, T & ET surface runoff rain + melt Flows and state variables base flow Hillslope routing Auto Calibration Execute these components in a loop to find the set of scalar multipliers that minimize the objective function
6
Multi-Scale Objective Function (MSOF) Minimize errors over hourly, daily, weekly, monthly intervals (k=1,2,3,4…n…user defined) q = flow averaged over time interval k n = number of flow intervals for averaging q m k = number of ordinates for each interval X = parameter set Weight: -Assumes uncertainty in simulated streamflow is proportional to the variability of the observed flow -Inversely proportional to the errors at the respective scales. Assume errors approximated by std. = Emulates multi- time scale nature of manual calibration
7
Average monthly flow Average weekly flow Average daily flow Hourly flow Calibration: MSOF Time Scales Multi-scale objective function represents different frequencies of streamflow and its use partially imitates manual calibration strategy
8
Before autocalibration of a priori parameters After autocalibration Observed Example of HL-RDHM Auto Calibration: ELDO2 for DMIP 2 Arithmetic Scale Auto Calibration: Case 1
9
Example of HL-RDHM Auto Calibration: ELDO2 for DMIP 2 Semi-Log Scale Auto Calibration: Case 1 Before autocalibration of a priori parameters After autocalibration Observed
10
Before autocalibration of a priori parameters After autocalibration Observed Auto Calibration: Case 2 Example of HL-RDHM Auto Calibration: ELDO2 for DMIP 2 Arithmetic Scale
11
HL-RDHM and ICP Display time series ICP modifications –Run MCP3 or HL-RDHM –Copy optimized parameters to HL- RDHM input file –Re-run HL-RDHM
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.