Download presentation
Presentation is loading. Please wait.
Published byJudith Fitzgerald Modified over 9 years ago
1
Kevin D. Donohue, University of Kentucky1 Basic EE Definitions, Units, Conventions, and Circuit Elements Volts, Current, Energy, Power, Sign Conventions, and Sources
2
Kevin D. Donohue, University of Kentucky2 Unit Prefixes pico (p) 10 -12 nano (n) 10 -9 micro ( ) 10 -6 milli (m) 10 -3 kilo (k) 10 3 mega (M) 10 6 giga (G) 10 9 tera (T) 10 12
3
Kevin D. Donohue, University of Kentucky3 Basic Definitions Electric Circuit - an interconnection of electrical components through which charge can be moved. Current - the rate of change of charge with respect to time (coulombs per second). 1 Ampere = 1 coulomb per second. 1 Volt = 1 joule per coulomb = 1 newton-meter per coulomb. 1 Watt = 1 Ampere-Volt = 1 joule per second
4
Kevin D. Donohue, University of Kentucky4 Flow Conventions Positive current denotes the direction of positive charge. Describe the direction of charge in both circuits. Indicate which elements are supplying and which are absorbing energy. I 1 =2 I 2 =-1 A B A B
5
Kevin D. Donohue, University of Kentucky5 Math Notation and Relationships Current, charge, and time Voltage, energy, and charge Voltage, current, and power Power supplied equals power absorbed for all elements in a circuit.
6
Kevin D. Donohue, University of Kentucky6 Passive Sign Convention It is assumed that positive charge entering the positive terminal of an element implies power absorbed by the element. Therefore, charge leaving the positive terminal of an element implies power supplied or delivered by the element. If the words absorbed or supplied are not given with a power value, power absorbed will be assumed. I V I V
7
Kevin D. Donohue, University of Kentucky7 Example Problems A 10 volt battery is connected to a 20 watt light bulb for 30 minutes. How much charge is lost from the battery? 5 coulombs of charge pass from point A to point B at a constant rate. If 100 joules is absorbed, what is the voltage across AB?
8
Kevin D. Donohue, University of Kentucky8 +V_+V_ +v(t)_+v(t)_ i(t)i(t) Independent Sources Independent sources can deliver power in a circuit. An ideal source will have either a fixed voltage OR current independent of other elements in the circuit.
9
Kevin D. Donohue, University of Kentucky9 Power Delivered/Absorbed Examples Find the power absorbed in each element assuming the passive sign convention +V-+V- IIV -V+-V+ I IV ab cd a1) I = 2 A, V = 3 V a2) I= -1 A, V = 4 V b1) I = 6 A, V = -2 V b2) I = -2A, V = -9 V c1) I = 7 A, V = 1 V c2) I = -3A, V = -2V d1) I = 1 A, V = -1 V d2) I = -2 A, V= 6 V
10
Kevin D. Donohue, University of Kentucky10 Power Circuits In a circuit power delivered must equal power absorbed over all elements. Find power delivered and absorbed in each element. - 6 V + 2 1 + 18 V - 0.5 A 2 1 + 1 V - 5 V +-+- 1 A
11
Kevin D. Donohue, University of Kentucky11 Dependent Sources Dependent sources can deliver power in a circuit. The voltage or current of a dependent source depends on the current or voltage in other circuit elements. CCCS CCVS VCCS VCVS F(i1)F(i1) + H ( i 1 ) - G ( v 1 ) + E ( v 1 ) -
12
Kevin D. Donohue, University of Kentucky12 Circuit Examples Find power absorbed/supplied by each element in the circuit. 4i14i1 -0.5 A + 6 V - 31 + 5 V - 0.5 A 2 i1i1 + 1 V - + 11 V -
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.