Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stephanie Majewski Stanford University

Similar presentations


Presentation on theme: "Stephanie Majewski Stanford University"— Presentation transcript:

1 Stephanie Majewski Stanford University
Silicon Detectors Stephanie Majewski Stanford University

2 Semiconductor Refresher
Si bandgap energy Eg = 1.12 eV kBT = K S. Majewski

3 Semiconductor Refresher
Si bandgap energy Eg = 1.12 eV kBT = K Doping: n-type  dopant adds electrons to conduction band (e.g. P, As) S. Majewski

4 Semiconductor Refresher
Si bandgap energy Eg = 1.12 eV kBT = K Doping: n-type  dopant adds electrons to conduction band (e.g. P, As) p-type  dopant adds holes to valence band (e.g. B) S. Majewski

5 Reverse-Biased Diodes
sensitive detector region Hamamatsu PIN Diode depletion region p-n junction larger depletion region p-i-n junction (i = intrinsic) S. Majewski

6 Interaction of Charged Particles
A high-energy particle produces uniform e-h density along its path The bias voltage attracts the electrons/holes to either contact S. Majewski

7 Ionization Energy Less material (1 m): More material (100 m):
Most probable energy loss Mean energy loss Less material (1 m): E dominated by counting statistics More material (100 m): Landau distribution with high-energy tail Silicon: Mean ionization energy = 3.6 eV S. Majewski

8 Energy Loss (dE/dx) dE/dx = # e-h pairs  3.6 eV / (300 m  tan dip)
p d t BAD 1154 Shape is Bethe-Bloch (see M. Spitznagel’s drift chamber talk) dE/dx = # e-h pairs  3.6 eV / (300 m  tan dip) Limited ability to distinguish particles S. Majewski

9 Advantages of Silicon Low ionization energy: 3.6 eV (e-h creation)
Compare to gas ~30 eV Many carriers / event Long mean free path (~100 nm) High charge collection efficiency Large energy loss / distance traveled (3.8 MeV/cm for a minimum ionizing particle) Large signals High carrier mobility ( ) at room temp, even w/ doping Rapid charge collection (~10ns) Detector/electronics integration Easy to fabricate S. Majewski

10 Silicon Wafer Fabrication
p i n S. Majewski

11 Silicon Detector Geometries
Strip Detectors BaBar, Belle, CDF, D0 Hybrid Pixel Detectors (at ATLAS, CMS) Squares instead of strips; integrated electronics Drift Detectors (used in Star at RHIC) Electrons move through the Si bulk to an anode strip at the end CCDs (used for SNAP, SLD) 3-D Silicon Detectors Proposed in ’95 by S. Parker at U. Hawaii Possible LHC detector upgrade S. Majewski

12 Strip Detector Geometry
“Strip Pitch” (~50m) is the distance between strips, whether they are connected to the electronics or not “Readout Pitch” includes floating strips Resolution ~ readout pitch / Readout Pitch Aluminum Strip Pitch n- Bulk Silicon dioxide p+ Implant S. Majewski

13 The BaBar Silicon Vertex Tracker

14 Silicon Wafers p+ strip side n+ strip side TOP VIEW Edge guard ring
P-stop n+ Implant 55 mm Polysilicon bias resistor p+ Implant Bias ring Al 50 mm Polysilicon bias resistor Edge guard ring p+ strip side n+ strip side TOP VIEW S. Majewski

15 Si Sensor Schematic Bias Voltage ~ 40 V Leakage Current ~ 10 A
AC Coupling SIDE VIEW S. Majewski

16 Si Sensor Schematic +2 V Bias Voltage ~ 40 V Leakage Current ~ 10 A
Pre-Amp Bias Voltage ~ 40 V Leakage Current ~ 10 A AC Coupling +40 V Pre-Amp +40 V S. Majewski +42 V

17 Readout Strips are AC coupled to preamplifiers
Separates signal current from bias current Guard rings to reduce noise and measure bulk bias current Charge sharing between strips Analog readout of strips gives better resolution Convert pulse height (charge) into long pulse in time, then measure time over threshold (TOT) S. Majewski

18 Readout Electronics AToM chip Radiation hard 128 channels
Injected Charge (fC) Time Over Threshold 1 MIP AToM chip Radiation hard 128 channels 1-2 strips/channel Minimum Ionizing Particle: 3.8fC  avg 7.5 counts 1-2 counts = noise S. Majewski

19 Carbon/Kevlar Fiber Support Ribs
SVT Modules Z Side ATOM chip  Side Carbon/Kevlar Fiber Support Ribs Si Wafers S. Majewski

20 Position Resolution Analog readout allows better resolution than pitch / S. Majewski

21 Track Finding Efficiency
How Many Layers? Number of Hits Found Track Finding Efficiency % BaBar TDR 5 layers 4 layers Define a Helix 4 points confirm a helix in tracking 5 layers needed to compensate for gaps and dead modules Inner 3 layers angle/impact parameter redundancy Outer 2 layers pattern recognition low pT tracking S. Majewski

22 SVT Data Transmission HDI Power Supplies Back MUX Link Si Wafers DAQ
HDI: High Density Interconnect. Mounting fixture and cooling for readout ICs. Kapton Tail: Flexible multi-layer circuit. Power, clock, commands, and data. Matching Card: Connects dissimilar cables. Impedance matching. HDI Link: Reference signals to HDI digital common. DAQ Link: Multiplex control, demultiplex data. Electrical -- optical conversion. HDI Matching Card Kapton Tail Front Cables Si Wafers Back Link DAQ Power Supplies MUX Fiber Optic to DAQ S. Majewski

23 Radiation Damage Acute damage Bulk damage
pinhole – short in AC coupling capacitor p-stop short – short between p-stop and metal contact (DC) Bulk damage radiation displaces Si atoms & creates defects eventual type inversion in bulk (n-type to p-type) can see as change in voltage needed to fully deplete S. Majewski

24 Radiation Damage Consequences of Defects
Recombination/generation centers  increased leakage current Trapping centers  introduce time delay  reduced signal Charge density changes  need increased bias voltage S. Majewski

25 Radiation Protection See Adam’s talk next week!
Silicon is not radiation hard BaBar SVT monitored by PIN diodes and diamond sensors briefIntro.html See Adam’s talk next week! S. Majewski

26 The BaBar SVT Thin wafers (300 m) to limit multiple scattering
5 Layers 0.94 m2 of Si ~ readout channels S. Majewski

27 Belle Silicon Vertex Detector
SVD 1 3 Layers SVD 2 4 Layers S. Majewski

28 ATLAS Semiconductor Tracker & Pixel Detectors
(SCT) Pixel Detectors S. Majewski

29 3-D Silicon Detector Brunel Univ. (UK), Stanford, and Hawaii
Possible LHC detector upgrade S. Majewski

30 The Rise of the Silicon Detector
S. Majewski

31 References General Silicon Detectors:
Lutz, G. Semiconductor Radiation Detectors: Device Physics. (Springer Verlag, Berlin, 1999). Spieler, H. Lectures on Detector Techniques Sadrozinski, H. “Applications of Si Detectors”, presented at IEEE BaBar Silicon Vertex Tracker: SVT Facts and Figures. Factoids.html TDR S. Majewski


Download ppt "Stephanie Majewski Stanford University"

Similar presentations


Ads by Google