Download presentation
1
Stephanie Majewski Stanford University
Silicon Detectors Stephanie Majewski Stanford University
2
Semiconductor Refresher
Si bandgap energy Eg = 1.12 eV kBT = K S. Majewski
3
Semiconductor Refresher
Si bandgap energy Eg = 1.12 eV kBT = K Doping: n-type dopant adds electrons to conduction band (e.g. P, As) S. Majewski
4
Semiconductor Refresher
Si bandgap energy Eg = 1.12 eV kBT = K Doping: n-type dopant adds electrons to conduction band (e.g. P, As) p-type dopant adds holes to valence band (e.g. B) S. Majewski
5
Reverse-Biased Diodes
sensitive detector region Hamamatsu PIN Diode depletion region p-n junction larger depletion region p-i-n junction (i = intrinsic) S. Majewski
6
Interaction of Charged Particles
A high-energy particle produces uniform e-h density along its path The bias voltage attracts the electrons/holes to either contact S. Majewski
7
Ionization Energy Less material (1 m): More material (100 m):
Most probable energy loss Mean energy loss Less material (1 m): E dominated by counting statistics More material (100 m): Landau distribution with high-energy tail Silicon: Mean ionization energy = 3.6 eV S. Majewski
8
Energy Loss (dE/dx) dE/dx = # e-h pairs 3.6 eV / (300 m tan dip)
p d t BAD 1154 Shape is Bethe-Bloch (see M. Spitznagel’s drift chamber talk) dE/dx = # e-h pairs 3.6 eV / (300 m tan dip) Limited ability to distinguish particles S. Majewski
9
Advantages of Silicon Low ionization energy: 3.6 eV (e-h creation)
Compare to gas ~30 eV Many carriers / event Long mean free path (~100 nm) High charge collection efficiency Large energy loss / distance traveled (3.8 MeV/cm for a minimum ionizing particle) Large signals High carrier mobility ( ) at room temp, even w/ doping Rapid charge collection (~10ns) Detector/electronics integration Easy to fabricate S. Majewski
10
Silicon Wafer Fabrication
p i n S. Majewski
11
Silicon Detector Geometries
Strip Detectors BaBar, Belle, CDF, D0 Hybrid Pixel Detectors (at ATLAS, CMS) Squares instead of strips; integrated electronics Drift Detectors (used in Star at RHIC) Electrons move through the Si bulk to an anode strip at the end CCDs (used for SNAP, SLD) 3-D Silicon Detectors Proposed in ’95 by S. Parker at U. Hawaii Possible LHC detector upgrade S. Majewski
12
Strip Detector Geometry
“Strip Pitch” (~50m) is the distance between strips, whether they are connected to the electronics or not “Readout Pitch” includes floating strips Resolution ~ readout pitch / Readout Pitch Aluminum Strip Pitch n- Bulk Silicon dioxide p+ Implant S. Majewski
13
The BaBar Silicon Vertex Tracker
14
Silicon Wafers p+ strip side n+ strip side TOP VIEW Edge guard ring
P-stop n+ Implant 55 mm Polysilicon bias resistor p+ Implant Bias ring Al 50 mm Polysilicon bias resistor Edge guard ring p+ strip side n+ strip side TOP VIEW S. Majewski
15
Si Sensor Schematic Bias Voltage ~ 40 V Leakage Current ~ 10 A
AC Coupling SIDE VIEW S. Majewski
16
Si Sensor Schematic +2 V Bias Voltage ~ 40 V Leakage Current ~ 10 A
Pre-Amp Bias Voltage ~ 40 V Leakage Current ~ 10 A AC Coupling +40 V Pre-Amp +40 V S. Majewski +42 V
17
Readout Strips are AC coupled to preamplifiers
Separates signal current from bias current Guard rings to reduce noise and measure bulk bias current Charge sharing between strips Analog readout of strips gives better resolution Convert pulse height (charge) into long pulse in time, then measure time over threshold (TOT) S. Majewski
18
Readout Electronics AToM chip Radiation hard 128 channels
Injected Charge (fC) Time Over Threshold 1 MIP AToM chip Radiation hard 128 channels 1-2 strips/channel Minimum Ionizing Particle: 3.8fC avg 7.5 counts 1-2 counts = noise S. Majewski
19
Carbon/Kevlar Fiber Support Ribs
SVT Modules Z Side ATOM chip Side Carbon/Kevlar Fiber Support Ribs Si Wafers S. Majewski
20
Position Resolution Analog readout allows better resolution than pitch / S. Majewski
21
Track Finding Efficiency
How Many Layers? Number of Hits Found Track Finding Efficiency % BaBar TDR 5 layers 4 layers Define a Helix 4 points confirm a helix in tracking 5 layers needed to compensate for gaps and dead modules Inner 3 layers angle/impact parameter redundancy Outer 2 layers pattern recognition low pT tracking S. Majewski
22
SVT Data Transmission HDI Power Supplies Back MUX Link Si Wafers DAQ
HDI: High Density Interconnect. Mounting fixture and cooling for readout ICs. Kapton Tail: Flexible multi-layer circuit. Power, clock, commands, and data. Matching Card: Connects dissimilar cables. Impedance matching. HDI Link: Reference signals to HDI digital common. DAQ Link: Multiplex control, demultiplex data. Electrical -- optical conversion. HDI Matching Card Kapton Tail Front Cables Si Wafers Back Link DAQ Power Supplies MUX Fiber Optic to DAQ S. Majewski
23
Radiation Damage Acute damage Bulk damage
pinhole – short in AC coupling capacitor p-stop short – short between p-stop and metal contact (DC) Bulk damage radiation displaces Si atoms & creates defects eventual type inversion in bulk (n-type to p-type) can see as change in voltage needed to fully deplete S. Majewski
24
Radiation Damage Consequences of Defects
Recombination/generation centers increased leakage current Trapping centers introduce time delay reduced signal Charge density changes need increased bias voltage S. Majewski
25
Radiation Protection See Adam’s talk next week!
Silicon is not radiation hard BaBar SVT monitored by PIN diodes and diamond sensors briefIntro.html See Adam’s talk next week! S. Majewski
26
The BaBar SVT Thin wafers (300 m) to limit multiple scattering
5 Layers 0.94 m2 of Si ~ readout channels S. Majewski
27
Belle Silicon Vertex Detector
SVD 1 3 Layers SVD 2 4 Layers S. Majewski
28
ATLAS Semiconductor Tracker & Pixel Detectors
(SCT) Pixel Detectors S. Majewski
29
3-D Silicon Detector Brunel Univ. (UK), Stanford, and Hawaii
Possible LHC detector upgrade S. Majewski
30
The Rise of the Silicon Detector
S. Majewski
31
References General Silicon Detectors:
Lutz, G. Semiconductor Radiation Detectors: Device Physics. (Springer Verlag, Berlin, 1999). Spieler, H. Lectures on Detector Techniques Sadrozinski, H. “Applications of Si Detectors”, presented at IEEE BaBar Silicon Vertex Tracker: SVT Facts and Figures. Factoids.html TDR S. Majewski
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.