Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Geodesy for Neutrino Physicists by Wes Smart, Fermilab Based on: “GPS Satellite Surveying” By Alfred Leick, Wiley (1990 ) Geodesy : a branch of applied.

Similar presentations


Presentation on theme: "1 Geodesy for Neutrino Physicists by Wes Smart, Fermilab Based on: “GPS Satellite Surveying” By Alfred Leick, Wiley (1990 ) Geodesy : a branch of applied."— Presentation transcript:

1 1 Geodesy for Neutrino Physicists by Wes Smart, Fermilab Based on: “GPS Satellite Surveying” By Alfred Leick, Wiley (1990 ) Geodesy : a branch of applied mathematics that determines the exact positions of points and figures and areas of large portions of the earth’s surface, the shape and size of the earth, and the variations of terrestrial gravity and magnetism. Or: what’s needed beyond the Flat Earth Society

2 2 Outline Ellipsoid model of the earth Three geodetic coordinate systems and the.. transformations between them Method of calculation Excel spreadsheet to do these transformations http://home.fnal.gov/~smart/geodesy/calcs.xls http://home.fnal.gov/~smart/geodesy/calcs.xls Examples (in excel): Chicago – Barcelona, NuMI Height above sea level, geoid, geoid height Summary

3 3 Earth Modeled by Reference Ellipse Spin Causes Larger Diameter at Equator than at Poles a=semi-major axis=6378137 m b=semi-minor axis=6356752.3141 f=flattening= 1/298.25722210 e=eccentricity=(0.00669438) 0.5 f=(a-b)/a e 2 =2f-f 2 =1-(b/a) 2 a-b= 21385 m b a GRS 80 (Geodetic Reference System) = Ellipse parameters in NAD 83 (North American Datum)

4 4 The Geodetic and Geocentric Cartesian Coordinate Systems  N h P xy z x y Surface Normal Meridian Looking from above EquatorLooking from above North Pole z is the spin axis  is latitude is longitude x=(N+h)cos  cos y=(N+h)cos  sin z=[(N(1-e 2 )+h]sin  P N=a/(1-e 2 sin 2  ) 0.5 e 2 =1-(b/a) 2 Greenwich + - North pole + - North South East West + East West - (Not Origin)

5 5 Local Geodetic Coordinates up P 1 ( ,h) xy z Normal to Ellipsoid Looking from above Equator z is the spin axis  is latitude is longitude A second point P 2 relative to P 1 is given by: n=-(x 2 -x 1 )sin  cos -(y 2 -y 1 )sin  sin +(z 2 -z 1 )cos  e=-(x 2 -x 1 )sin +(y 2 -y 1 )cos u=(x 2 -x 1 )cos  cos +(y 2 -y 1 )cos  sin  (z 2 -z 1 )sin  North pole north east Specified for a point P 1, Cartesian up is along the normal to Ellipsoid north is the intersection of the plane perpendicular to the normal containing P 1 and the plane containing the z (spin) axis and P 1 east = the cross product: north x up Into screen h

6 6 Compare Coordinate Systems SystemCoordinatesRangeCartesian/Familiarity Easy Calcs ?. GeodeticLatitudeglobalnomedium Longitude Ellipsoidal ht. Geocentricx, y, zglobalyeslow Cartesian Localnorth,localyeshigh Geodeticeast, up

7 7 Calculation Method Get Geodetic coordinates of points: may need to find ellipsoidal heights from elevations Use Spreadsheet to find Geocentric Cartesian coordinates Do desired calculations in the Geocentric Cartesian coordinate system (which you already know how to do) If needed, use the inverse transformation to calculate Geodetic coordinates of results

8 8 Azimuth Example Chicago to Barcelona up xy z Normal to Ellipsoid Looking from above Equator North pole north east Into screen Looking from above North Pole Dashed lines are not in the plane y x Chicago ncnc ecec nbnb ebeb Barcelona Plane of right plot These 2 cities are both at 42 o N Latitude and 90 o apart in Longitude. Beam must leave Chicago north of east and would arrive in Barcelona from north of west. These directions are not 180 o apart because east is a different direction in each city. (This is also true for north and up.) This applies as well for an airplane on the great circle route between the two cities.

9 9 Spreadsheet Results; Chicago to Barcelona Part AGeodeticCoordinatesGeocentricCartesianCoordinates A1Ellipsoid heightLatitude 0 Longitude 0 xyz "Chicago"NAD 830.000042.0000000-88.0000000165667.8748-4744107.22484245603.8360 A2 "Barcelona"NAD830.000042.00000002.00000004744107.2248165667.87484245603.8360 Angles A1 to A2ddxdydz azimuthvertical6713270.32164578439.35004909775.09970.0000 0.98108986-0.55328241radLocal Geodetic Coordinates of A2; ref A1 56.21230819-31.7007471degdndedu 3176362.29814746998.9683-3527707.7199 Part BGeodeticCoordinatesGeocentricCartesianCoordinates B1Ellipsoid heightLatitude 0 Longitude 0 xyz "Barcelona"NAD830.000042.00000002.00000004744107.2248165667.87484245603.8360 B2 "Chicago"NAD 830.000042.0000000-88.0000000165667.8748-4744107.22484245603.8360 Angles B1 to B2ddxdydz azimuthvertical6713270.3216-4578439.3500-4909775.09970.0000 -0.98108986-0.55328241radLocal Geodetic Coordinates of B2; ref B1 303.7876918-31.7007471degdndedu All lengths in meters3176362.2981-4746998.9683-3527707.7199

10 10 Spreadsheet Results; NuMI Target to Far Part AGeodeticCoordinatesGeocentricCartesianCoordinates A1Ellipsoid heightLatitude 0 Longitude 0 xyz ACTRN1NAD 83153.968341.8320235-88.2655587144058.5523-4757396.98764231823.0745 A2 FARctr 2001(NAD83)-248.399247.8202665-92.2414120-167796.9924-4287098.72164703296.8722 Angles A1 to A2ddxdydz azimuthvertical735337.9371-311855.5447470298.2661471473.7977 -0.41723537-0.05829776radLocal Geodetic Coordinates of A2; ref A1 336.0941743-3.3402156degdndedu 671113.2727-297478.1082-42844.2768 Part BGeodeticCoordinatesGeocentricCartesianCoordinates B1Ellipsoid heightLatitude 0 Longitude 0 xyz FARctr 2001(NAD83)-248.399247.8202665-92.2414120-167796.9924-4287098.72164703296.8722 B2 ACTRN1NAD 83153.968341.8320235-88.2655587144058.5523-4757396.98764231823.0745 Angles B1 to B2ddxdydz azimuthvertical735337.9371311855.5447-470298.2661-471473.7977 2.67536239-0.05718496radLocal Geodetic Coordinates of B2; ref B1 153.2869734-3.2764567degdndedu -655781.0335330010.3321-42027.3543

11 11 Spreadsheet Results; MINOS Near to Far Part AGeodeticCoordinatesGeocentricCartesianCoordinates A1Ellipsoid heightLatitude 0 Longitude 0 xyz NearNAD 8393.497141.8405633-88.2706209143617.7785-4756732.27234232489.4513 A2 FARctr 2001(NAD83)-248.399247.8202665-92.2414120-167796.9924-4287098.72164703296.8722 Angles A1 to A2ddxdydz azimuthvertical734298.6171-311414.7709469633.5508470807.4209 -0.41729429-0.05813482radLocal Geodetic Coordinates of A2; ref A1 336.0907986-3.3308801degdndedu 670153.5882-297099.9605-42664.2796 Part BGeodeticCoordinatesGeocentricCartesianCoordinates B1Ellipsoid heightLatitude 0 Longitude 0 xyz FARctr 2001(NAD83)-248.399247.8202665-92.2414120-167796.9924-4287098.72164703296.8722 B2 NearNAD 8393.497141.8405633-88.2706209143617.7785-4756732.27234232489.4513 Angles B1 to B2ddxdydz azimuthvertical734298.6171311414.7709-469633.5508-470807.4209 2.67536239-0.05718496radLocal Geodetic Coordinates of B2; ref B1 153.2869734-3.2764567degdndedu All lengths in meters-654854.1585329543.8985-41967.9533

12 12 Spreadsheet “Subroutines” Convert degrees, minutes, seconds to degreesConvert degrees to degrees, minutes, seconds 0 '" 000 '" 414955.284641.83202351 414955.284625 Enter absolute value input data only in cells with black borders using paste special (value) For negative input data, enter absolute value and append minus sign to result. Find ellipsoid height, h, in meters Linear Interpolation from elevation, H, in feet. h=H+N ParameterResult H (feet)N (m)h (m)100 1210-32.0336.80802-10100 7-70 Find h, Latitude, Longitude from x,y,z Only change cells with black borders.  Lat k-1 0 h ( m)41.83202351Longitude 0 x inputy inputz input 153.968341.83202351-88.26555873144058.5523-4757396.9876 4231823.074 5 Lat k  41.83202351 0 Lat 1  41.83202813 0 3. Iterate Latitude equation by copying red border cell to 1. Enter x,y,z using paste special (value) black border cell, using paste special (value), 2. Copy "Lat 1" or red border cell to black until the red and black bordered cells agree. border Lat k-1cell using paste special 4. Copy h, Lat, Long to desired locations, using (value) paste special (value),

13 13 Linear Interpolation Use to find the speadsheet input parameter which gives the desired result for an output value. All data input should be by typing or paste special value. Input only into cells marked for input. Select the input parameter and output result you wish to use, put desired value of result into the answer line of the “subroutine” Guess a value for the parameter, put in spreadsheet, copy parameter and result into line 1 of the “subroutine” Repeat for line 2 Put answer parameter value in spreadsheet, copy it and result into line 1 or 2 (pick the line which has its result further from the desired value). Repeat last step until the speadsheet result has the desired value. Linear Interpolation ParameterResult 100 2-10100 answer7-70

14 14 Spreadsheet Results; Offaxis Detector GeodeticCoordinatesGeocentricCartesianCoordinates A1Ellipsoid heightLatitude 0 Longitude 0 xyz ACTRN1NAD 83153.968341.8320235-88.2655587144058.5523-4757396.98764231823.0745 A2 10 mradNAD83305.000047.1500000-91.8152727-137659.0444-4343503.44684653345.3173 Angles A1 to A2ddxdydz azimuthvertical654487.3327-281717.5967413893.5409421522.2428 -0.42425381-0.05116410rad 335.6920471-2.9314871degLocal Geodetic Coordinates of A2; ref A1 dndedu 595683.9779-269061.1748-33471.6487 along y' (m)total transverseangle (rad)angle (deg) A2 Relative to NuMI Beam 10 mrad654454.60866544.76430.010000500635.6119-6054.05362486.43820.5730 Longitude 0 Angle to B (rad) -91.81527270.010000 ParameterResult 1-91.815270.010000 2-91.815000.009981 answer-91.815272660.010000All lengths in meters

15 15

16 16 Find latitude, longitude, and ellipsoidal height from geocentric Cartesian coordinates x,y,z First approximate solution for  tan  1 =z/[(1-e 2 )(x 2 +y 2 ) 0.5 ] Then find  by iteration tan  =[z+ae 2 sin  /(1-e 2 sin 2  ) 0.5 ]/(x 2 +y 2 ) 0.5 Finally tan =y/x and h=[(x 2 +y 2 ) 0.5 )/cos  ]-N Inverse Transformation

17 17 Heights Geoid Ellipsoid H N h P H, Orthometric height, is above “sea level”, ie elevation h is the ellipsoidal height, GPS measures in h directly N, the geoid height, is about -32 m at Soudan and Fermilab To calculate N: http://www.ngs.noaa.gov/GEOID/GEOID03/download.html Geoid is the equipotential surface with gravity potential chosen such that on average it coincides with the global ocean surface. N accounts for the difference between the real earth and the ideal reference ellipsoid used for calculation. N varies with latitude and longitude. h=H+ N

18 18 Geoid Heights for North America

19 19

20 20 Summary Earth is modeled well by ellipsoid 3 geodetic coordinate systems  Geodetic: Latitude, Longitude, Ellipsoidal height  Geocentric Cartesian: x, y, z  Local Geodetic: north, east, up Transformations between them with Excel Transform points to Geocentric Cartesian where calculations are easy and familiar If desired, transform answers back to Geodetic Coordinates


Download ppt "1 Geodesy for Neutrino Physicists by Wes Smart, Fermilab Based on: “GPS Satellite Surveying” By Alfred Leick, Wiley (1990 ) Geodesy : a branch of applied."

Similar presentations


Ads by Google