Download presentation
Presentation is loading. Please wait.
Published byDelilah Terry Modified over 9 years ago
1
MIPD Small-scale energy harvesting device LIUJIN
2
MIPD Contents Introduction 1 Thermoelectric power generation 2 Vibration power generation 3 RF power generation 4 Conclusion 4 5
3
Introduction Application of wireless sensors network Life time size Energy harvesting devices A directly to sensor B to a secondary battery in node
4
MIPD Emerging types Thermo-electric power generation T gradient, heat flows Low T difference feasible ; Vibration power conversion Mechanical vibrations Kinetic energy-> AC power RF power conversion Background radiation
5
Thermoelectric part Seebeck effect (coefficient α=v 2 -v 1 /δT , highest observed in semiconductor) Thermocouples
6
Characterize thermo materials Z=α 2 /RK (K:parellel thermal conductance) Why semiconductor is good? A charge carrier concentration B High electrical conductivity C low thermal conductivity
7
Through-plane module MIPD LAB 12 thermocouples , 60uw/cm2, △ T=5K n : Bi2Te3 , p :( Bi , Sb ) 2Te3 , single element : 20*40*80um 3 , Length<100um
8
In-plane module Advantage: L& higher aspect ratio, more thermocouples per unit, cheaper fab tech Design diff: substrate(bridge) removed or low thermal and electrical conductivity MIPD LAB
9
In-plane module : a different design One type of semiconductor was used,1000 elements, dT=10K, 1.5uw,2v Thermocouple 7 um wide and 500 um long MIPD LAB
10
Thermoelectric materials limitation: Wiedemann-Franz law: electrical conductivity ~electronic component of thermal conductivity RT:Bi2Te3(ZT~1,bulk material) Other way: phonon transport Low dimension: quantum confinement MIPD LAB
11
Vibration power generation AC power- need rectification Power origin: wide range of frequency (fundamental: 13-385HZ,a:0.1~12) strong maximum output at resonant frequency(f increases when size decreases) MIPD LAB
12
Generic Model: MIPD LAB Trade off between the bandwidth and power Comparison Unit (P/a 2 per unit)
13
MIPD Strain->Materials electrical potential gradient relative motion of magnet and coil variable capacitor Three mechanisms Electromagnetic Piezoelectric Electrostatic
14
Electromagnetic Assuming constant magnetic field: Challenge: A V<100mv, 1cm 3 B compatibility of magnetic materials C magnetic field interfere electronics component MIPD LAB
15
Volume:~4mm3 f=4.4khz a=380m/s2 P=0.3uw Membrane:7um housing GaAs MIPD LAB
16
Best performance: Four magnetic configuration: F=52HZ,a=0.59m/s 2, v=0.15cm 3 p=46uw
17
MIPD Piezoelectric 33mode: compressive strain perpendicular to electrode mode 31mode: strain perpendicular to electrode d33>d31, but d31 is easier to implement
18
Bimorph configuration MIPD LAB F=85HZ, p=210uw,v=10v
19
Electrostatic Advantage: compatible &easily integrated Disadvantage: 1. initial voltage 2.power generation lost by accident MIPD LAB
20
In-plane overlap-varying converter A:finger:7um wide, 512um deep, 400each side, 15*5*1mm3, predicted:2.5khz,8.6uw.8v B:20*20*2mm3,10hz,3.9m/s2,200v,6uw, electret coated on electrode MIPD LAB
21
In-plane gap-closing closing converter MIPD LAB optimized, 2.25m/s2,120hz, 1cm3,116uw(predicted)
22
Out-of-plane gap closing converter 36uw,2.4v,6hz, compressed volume 13.5cm MIPD LAB
23
RF power generation Incident power density (plane wave): S=E 2 /R Distance restriction RF source : A commercial radio and tv broadcast antennas(<3km,2.6uw/cm2) B Base stations for cellphone service C WLANS (wirless local area networks) MIPD LAB
24
RFID Actively provide rf power to wirless sensors DC-RF-transmission-collect-(AC-DC conversion) MIPD LAB
25
conclusion Thermo: most compatible; aspect ratio, lower resistance, n of thermal couples Vibration: resonant frequency problem size decreases, f increases RF: RFID tags not typical harvesting device MIPD LAB
26
MIPD
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.