Download presentation
Presentation is loading. Please wait.
Published byAugust Daniels Modified over 9 years ago
1
Chapter 5 5 Computing Components
2
Basic Concepts of Computer Hardware The need to compute
3
Basic Concepts of Computer Hardware The need to order information
4
Basic Concepts of Computer Hardware The ability to store information
5
Basic Concepts of Computer Hardware... And interface with humanity
6
Basic Concepts of Computer Hardware Analog Computers....
7
Basic Concepts of Computer Hardware Digital Computers...
8
Basic Concepts of Computer Hardware Super Computers...
9
9 Computer Components Consider the following ad: Insatavialion 640 Laptop Exceptional Performance and Portability Intel® Core™ 2 Duo (2.66GHz/1066Mhz FSB/6MB cache) 15.6” High Definition (1080p) LED Backlit LCD Display (1366 x 768) 512MB ATI Mobility Radeon Graphics Built-in 2.0MP Web Camera 4GB Shared Dual Channel DDR2 at 800MHz 500GB SATA Hard Drive at 5400RPM 8X Slot Load DL DVD+/- RW Drive 802.11 a/g/n and Bluetooth 3.0 85 WHr Lithium Ion Battery (2) USB 2.0, HDMI, 15-pin VGA, Ethernet 10/100/1000, IEEE 1394 Firewire, Express Card, Audio line-in, line-out, mic-in 14.8W X 1.2H X 10.1D, 5.6 lbs Microsoft0® Windows 7® Professional Microsoft® Office Home and Student 2007 36-Month subscription to McAfee Security Center Anti-virus
10
10 Computer Components What does all this jargon mean? Intel® Core™ 2 Duo (2.66GHz/1066Mhz FSB/6MB cache) 4GB Shared Dual Channel DDR2 at 800 MHz 500 GB SATA Hard Drive at 5400RPM 15.6” High Definition (1080p) LED Backlit LCD Display (1366 x 768) 8X Slot Load DL DVD+/- RW Drive 14.8”W X 1.2”H X10.1” D, 5.6 lbs. Be patient! If you don't know now, you should know shortly
11
Computer Components, cont… 512 MB ATI Mobility Radeon Graphics 85 WHr Lithium Ion Battery (2) USB 2.0, HDMI, 15-Pin VGA, Ethernet 10/100/1000 IEEE 1394 Firewire, Express Card, Audio line-in, line-out, mic-in Microsoft® Windows 7® Professional Microsoft® Office Home and Student 2007 36-Month subscription to McAfee Security Center Anti- virus 11
12
12 Sizes in Perspective What is a hertz?
13
13 Sizes in Perspective Intel Processor speed 2.66 GHz SDRAM size 4GB speed 800 MHz 500GB SATA at 5400 RPM Transfer rate 300MB per second Flat screen dot pitch.28mm To which do these apply? Bigger is better Faster is better Smaller is better
14
Basic Concepts of Computer Hardware von Neumann Computer –Program & data are stored in the same memory –Single program counter – one instruction at a time Input devices accept data and programs from the outside world Input devices accept data and programs from the outside world Output devices provide results to the user Output devices provide results to the user Some devices are both input and output Some devices are both input and output
15
Basic Concepts of Computer Hardware Input devices –Keyboard –Mouse –Touch pad –Touch screen –Light pen –Microphone –Scanner –Digital camera
16
Basic Concepts of Computer Hardware Output devices –Display Monitor –Hard drive –Speakers –Optical Disk –Printers
17
Basic Concepts of Computer Hardware Dual Mode (input & output) –Touch screen display –Hard drive –Optical Disk –Network card –Modem –Zip / Jazz drive
18
18 Stored-Program Concept Figure 5.1 The von Neumann architecture
19
Memory A collection of cells, each with a unique physical address; both addresses and contents are in binary
20
20 Arithmetic/Logic Unit Performs basic arithmetic operations such as adding Performs logical operations such as AND, OR, and NOT Most modern ALUs have a small amount of special storage units called registers
21
21 Input/Output Units Input Unit A device through which data and programs from the outside world are entered into the computer; Can you name three? Output unit A device through which results stored in the computer memory are made available to the outside world Can you name two?
22
Connecting Devices Direct interface to motherboard –Usually a “card” (NIC, Modem, Special Function) –Usually require special software (driver) Connect via a “port” –Port is a pathway for data to go in & out of the computer from external devices –External devices are usually referred to as a “peripheral” –Different types of ports have different characteristics
23
Connecting Devices Some of the ports: –Parallel –Serial –Video –USB –RJ-11 –RJ-45
24
Connecting Devices Properties of ports –Serial vs Parallel –Daisy chain devices (USB or SCSI) –Speed (10M / 100M / 1G) –Buffer requirements / capacity
25
25 Control Unit Control unit The organizing force in the computer Instruction register (IR) Contains the instruction that is being executed Program counter (PC) Contains the address of the next instruction to be executed Central Processing Unit (CPU) ALU and the control unit called the, or CPU
26
26 Flow of Information Bus A set of wires that connect all major sections Figure 5.2 Data flow through a von Neumann architecture
27
27 The Fetch-Execute Cycle Fetch the next instruction Decode the instruction Get data if needed Execute the instruction Why is it called a cycle?
28
28 The Fetch-Execute Cycle Figure 5.3 The Fetch-Execute Cycle
29
The Central Processing Unit Multiple components within the CPU ALU : does arithmetic and logic Control : manages all components Registers : used to manipulate data Instruction Decode : figures out what the instruction does Program Counter : keeps track of next instruction Accumulator : special register for arithmetic Buses : interconnect components
30
Moving information within the computer Data bus – used to move data between components Address Bus – used to specify memory location Control Bus – used to synchronize / regulate components Data is moved around in bytes Data moves either serially or in parallel –Serial data is sent one bit at a time ins sequence –Parallel data is sent eight or more bits at a time Maximum size depends on width of the bus Pentium has a 32bit data bus The type of component determines the need for serial or parallel –Keyboard & mouse are serial –Hard drive, CDrom, & Printer are parallel –Everything in CPU is parallel
31
The CPU Cycle
32
Fetch instructions from memory Decode instructions and fetch operands Execute the decoded instruction Service device interrupts Repeat cycle Cycle runs at the approximate clock speed of the CPU (more or less)
33
Storing Data & Information Three different types of storage: –Primary memory (RAM) –Secondary storage (Hard drive) –Tertiary storage (removable material ie CD) All storage has characteristics (properties) –Size –Speed –Access method –Volatility
34
Storing Data & Information Primary Storage usually called RAM –Random access memory –Electronic (no moving parts) –Fastest type of storage Access time in the nanosecond range –Direct access (can go directly to any location) –Volatile form of storage –Most expensive of the three types –Special types of memory ROM (read only memory) Cache (high speed memory) PROM (programmable read only memory)
35
Storing Data & Information Secondary Storage usually hard drive –Supports direct access at block / file level –Electronic & mechanical ( moving parts) –Slower than RAM due to mechanical aspects Access time in the millisecond range –Nonvolatile form of storage –Much less expensive than RAM –Usually significantly larger than RAM
36
Storing Data & Information Tertiary Storage usually removable –More often than not it is sequential –Electronic & mechanical ( moving parts) –Slower than hard drive due to mechanical aspects and removable media –Nonvolatile form of storage –Cheapest form of storage –Used for archival storage, not frequently referenced, or extremely large data sets Good for backup purposes
37
Storing Data & Information Capacity –1 byte = 8 bits –1K = 1024 bytes –1M = 1024 K = 1,048,576 bytes –1G = 1024 M = 1,073,741,824 bytes –1T = 1024 G = 1,099,511,627,776 bytes Speed –Millisecond = one thousandth of a second –Microsecond = one millionth of a second; one thousandth of a millisecond –Nanosecond = one billionth of a second; one thousandth of a microsecond
38
Storing Data & Information Information Retrieval –Random Access (direct) – allows immediate access to stored data RAM / ROM (each location is directly accessible) –Sequential Access – requires accessing everything from the beginning of the file up to the item you want VHS video tape –Pseudo-direct access – can jump to designated starting points Audio CD – can directly access starting point of each song, but must search within the song sequentially Type of retrieval and frequency of use will determine how the data should be stored
39
Storing Data & Information Characteristics of different types of storage RAM –Access time: access times ranging from 80ns to 50ns –Size: PCs today can range from 256M to 1G –Cost: depends on density 256M ~ $110 / 1G ~ $375 Hard drive –Access time: depends on speed – 7200rpm -- 8.9ms –Size: 160 G –Cost: $110 Removable Storage (Zip / Jazz) [250 M Zip] –Access time: depends on interface – 40ms seek / 1.4Mbps xfer –Size: Unlimited –Cost: $130 + cost of media (8 pack - $85)
40
40 RAM and ROM Random Access Memory (RAM) Memory in which each location can be accessed and changed Read Only Memory (ROM) Memory in which each location can be accessed but not changed RAM is volatile, ROM is not What does volatile mean?
41
Magnetic Tape The first truly mass auxiliary storage device was the magnetic tape drive Tape drives have a major problem; can you describe it? Figure 5.4 A magnetic tape
42
Magnetic Disks Figure 5.5 The organization of a magnetic disk
43
43 Magnetic Disks History Floppy disks (Why "floppy"?) 1970. 8" in diameter " late 1970, 5 1/2" now, 3 1/2" Zip drives Tracks near center are more densely packed Why?
44
44 Magnetic Disks Seek time Time it takes for read/write head to be over right track Latency Time it takes for sector to be in position Access time Can you define it?
45
45 Compact Disks CD A compact disk that uses a laser to read information stored optically on a plastic disk; data is evenly distributed around track CD-ROM read-only memory CD-DA digital audio CD-WORM write once, read many RW or RAM both read from and written to DVD Digital Versatile Disk, used for storing audio and video
46
46 Flash Drives Flash Memory Nonvolatile Can be erased and rewritten
47
47 Touch Screens Touch screen A computer monitor that can respond to the user touching the screen with a stylus or finger There are three types –Resistive –Capacitive –Infrared –Surface acoustic wave (SAW)
48
48 Synchronous processing One approach to parallelism is to have multiple processors apply the same program to multiple data sets Figure 5.8 Processors in a synchronous computing environment
49
49 Pipelining Arranges processors in tandem, where each processor contributes one part to an overall computation Figure 5.9 Processors in a pipeline
50
50 Shared Memory Parallel Processor Communicate through shared memory Figure 5.10 Shared memory configuration of processors
51
51 Embedded Systems Embedded systems Computers that are dedicated to perform a narrow range of functions as part of a larger system Empty your pockets or backpacks. How many embedded systems do you have?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.