Download presentation
Presentation is loading. Please wait.
Published byGarey Alan Dickerson Modified over 9 years ago
4
Symmetry Motif: the fundamental part of a symmetric design that, when repeated, creates the whole pattern Operation: some act that reproduces the motif to create the pattern Element: an operation located at a particular point in space
5
2-D Symmetry Symmetry Elements 1. Rotation a. Two-fold rotation = 360 o /2 rotation to reproduce a motif in a symmetrical pattern 6 6 A Symmetrical Pattern
6
Symmetry Elements 1. Rotation a. Two-fold rotation = 360 o /2 rotation to reproduce a motif in a symmetrical pattern = the symbol for a two-fold rotation Motif Element Operation 6 6 2-D Symmetry
7
6 6 first operation step second operation step 2-D Symmetry Symmetry Elements 1. Rotation a. Two-fold rotation = 360 o /2 rotation to reproduce a motif in a symmetrical pattern = the symbol for a two-fold rotation
8
Symmetry Elements 1. Rotation a. Two-fold rotation Some familiar objects have an intrinsic symmetry 2-D Symmetry
9
Symmetry Elements 1. Rotation a. Two-fold rotation Some familiar objects have an intrinsic symmetry 2-D Symmetry
10
Symmetry Elements 1. Rotation a. Two-fold rotation Some familiar objects have an intrinsic symmetry 2-D Symmetry
11
Symmetry Elements 1. Rotation a. Two-fold rotation Some familiar objects have an intrinsic symmetry 2-D Symmetry
12
Symmetry Elements 1. Rotation a. Two-fold rotation Some familiar objects have an intrinsic symmetry 2-D Symmetry
13
Symmetry Elements 1. Rotation a. Two-fold rotation Some familiar objects have an intrinsic symmetry 2-D Symmetry
14
Symmetry Elements 1. Rotation a. Two-fold rotation Some familiar objects have an intrinsic symmetry 180 o rotation makes it coincident What’s the motif here?? Second 180 o brings the object back to its original position 2-D Symmetry
15
Symmetry Elements 1. Rotation b. Three-fold rotation = 360 o /3 rotation to reproduce a motif in a symmetrical pattern 6 6 6 2-D Symmetry
16
6 6 6 step 1 step 2 step 3 2-D Symmetry Symmetry Elements 1. Rotation b. Three-fold rotation = 360 o /3 rotation to reproduce a motif in a symmetrical pattern
17
Symmetry Elements 1. Rotation 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 1-fold 2-fold 3-fold4-fold 6-fold 9 t d Z 5-fold and > 6-fold rotations will not work in combination with translations in crystals (as we shall see later). Thus we will exclude them now. a identity Objects with symmetry: 2-D Symmetry
18
4-fold, 2-fold, and 3-fold rotations in a cube Click on image to run animation
19
Symmetry Elements 2. Inversion (i) inversion through a center to reproduce a motif in a symmetrical pattern = symbol for an inversion center inversion is identical to 2-fold rotation in 2-D, but is unique in 3-D (try it with your hands) 6 6 2-D Symmetry
20
Symmetry Elements 3. Reflection (m) Reflection across a “mirror plane” reproduces a motif = symbol for a mirror plane 2-D Symmetry
21
We now have 6 unique 2-D symmetry operations: 1 2 3 4 6 m Rotations are congruent operations reproductions are identical Inversion and reflection are enantiomorphic operations reproductions are “opposite-handed” 2-D Symmetry
22
Combinations of symmetry elements are also possible To create a complete analysis of symmetry about a point in space, we must try all possible combinations of these symmetry elements In the interest of clarity and ease of illustration, we continue to consider only 2-D examples 2-D Symmetry
23
Try combining a 2-fold rotation axis with a mirror 2-D Symmetry
24
Try combining a 2-fold rotation axis with a mirror Step 1: reflect (could do either step first) 2-D Symmetry
25
Try combining a 2-fold rotation axis with a mirror Step 1: reflect Step 2: rotate (everything) 2-D Symmetry
26
Try combining a 2-fold rotation axis with a mirror Step 1: reflect Step 2: rotate (everything) Is that all?? 2-D Symmetry
27
Try combining a 2-fold rotation axis with a mirror Step 1: reflect Step 2: rotate (everything) No! A second mirror is required 2-D Symmetry
28
Try combining a 2-fold rotation axis with a mirror The result is Point Group 2mm “2mm” indicates 2 mirrors The mirrors are different (not equivalent by symmetry) 2-D Symmetry
29
Now try combining a 4-fold rotation axis with a mirror 2-D Symmetry
30
Now try combining a 4-fold rotation axis with a mirror Step 1: reflect 2-D Symmetry
31
Now try combining a 4-fold rotation axis with a mirror Step 1: reflect Step 2: rotate 1 2-D Symmetry
32
Now try combining a 4-fold rotation axis with a mirror Step 1: reflect Step 2: rotate 2 2-D Symmetry
33
Now try combining a 4-fold rotation axis with a mirror Step 1: reflect Step 2: rotate 3 2-D Symmetry
34
Now try combining a 4-fold rotation axis with a mirror Any other elements? 2-D Symmetry
35
Now try combining a 4-fold rotation axis with a mirror Yes, two more mirrors Any other elements? 2-D Symmetry
36
Now try combining a 4-fold rotation axis with a mirror Point group name?? Yes, two more mirrors Any other elements? 2-D Symmetry
37
Now try combining a 4-fold rotation axis with a mirror 4mm Point group name?? Yes, two more mirrors Any other elements? 2-D Symmetry Why not 4mmmm?
38
3-fold rotation axis with a mirror creates point group 3m Why not 3mmm? 2-D Symmetry
39
6-fold rotation axis with a mirror creates point group 6mm 2-D Symmetry
40
All other combinations are either: Incompatible (2 + 2 cannot be done in 2-D) Redundant with others already tried m + m 2mm because creates 2-fold This is the same as 2 + m 2mm 2-D Symmetry
41
The original 6 elements plus the 4 combinations creates 10 possible 2-D Point Groups: 1 2 3 4 6 m 2mm 3m 4mm 6mm Any 2-D pattern of objects surrounding a point must conform to one of these groups 2-D Symmetry
42
3-D Symmetry New 3-D Symmetry Elements 4. Rotoinversion a. 1-fold rotoinversion ( 1 )
43
3-D Symmetry New 3-D Symmetry Elements 4. Rotoinversion a. 1-fold rotoinversion ( 1 ) Step 1: rotate 360/1 (identity)
44
3-D Symmetry New 3-D Symmetry Elements 4. Rotoinversion a. 1-fold rotoinversion ( 1 ) Step 1: rotate 360/1 (identity) Step 2: invert This is the same as i, so not a new operation
45
3-D Symmetry New Symmetry Elements 4. Rotoinversion b. 2-fold rotoinversion ( 2 ) Step 1: rotate 360/2 Note: this is a temporary step, the intermediate motif element does not exist in the final pattern
46
3-D Symmetry New Symmetry Elements 4. Rotoinversion b. 2-fold rotoinversion ( 2 ) Step 1: rotate 360/2 Step 2: invert
47
3-D Symmetry New Symmetry Elements 4. Rotoinversion b. 2-fold rotoinversion ( 2 ) The result:
48
3-D Symmetry New Symmetry Elements 4. Rotoinversion b. 2-fold rotoinversion ( 2 ) This is the same as m, so not a new operation
49
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 )
50
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) Step 1: rotate 360 o /3 Again, this is a temporary step, the intermediate motif element does not exist in the final pattern 1
51
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) Step 2: invert through center
52
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) Completion of the first sequence 1 2
53
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) Rotate another 360/3
54
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) Invert through center
55
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) Complete second step to create face 3 1 2 3
56
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) Third step creates face 4 (3 (1) 4) 1 2 3 4
57
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) Fourth step creates face 5 (4 (2) 5) 1 2 5
58
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) Fifth step creates face 6 (5 (3) 6) Sixth step returns to face 1 1 6 5
59
3-D Symmetry New Symmetry Elements 4. Rotoinversion c. 3-fold rotoinversion ( 3 ) This is unique 1 6 5 2 3 4
60
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 )
61
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 )
62
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) 1: Rotate 360/4
63
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) 1: Rotate 360/4 2: Invert
64
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) 1: Rotate 360/4 2: Invert
65
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) 3: Rotate 360/4
66
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) 3: Rotate 360/4 4: Invert
67
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) 3: Rotate 360/4 4: Invert
68
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) 5: Rotate 360/4
69
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) 5: Rotate 360/4 6: Invert
70
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) This is also a unique operation
71
3-D Symmetry New Symmetry Elements 4. Rotoinversion d. 4-fold rotoinversion ( 4 ) A more fundamental representative of the pattern
72
3-D Symmetry New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 ) Begin with this framework:
73
3-D Symmetry New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 ) 1
74
3-D Symmetry 1 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
75
3-D Symmetry 1 2 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
76
3-D Symmetry 1 2 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
77
3-D Symmetry 1 3 2 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
78
3-D Symmetry 1 3 2 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
79
3-D Symmetry 1 3 4 2 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
80
3-D Symmetry 1 2 3 4 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
81
3-D Symmetry 1 2 3 4 5 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
82
3-D Symmetry 1 2 3 4 5 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
83
3-D Symmetry 1 2 3 4 5 6 New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 )
84
3-D Symmetry New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 ) Note: this is the same as a 3-fold rotation axis perpendicular to a mirror plane (combinations of elements follows) Top View
85
3-D Symmetry New Symmetry Elements 4. Rotoinversion e. 6-fold rotoinversion ( 6 ) A simpler pattern Top View
86
3-D Symmetry We now have 10 unique 3-D symmetry operations: 1 2 3 4 6 i m 3 4 6 Combinations of these elements are also possible A complete analysis of symmetry about a point in space requires that we try all possible combinations of these symmetry elements
87
3-D Symmetry 3-D symmetry element combinations a. Rotation axis parallel to a mirror Same as 2-D 2 || m = 2mm 3 || m = 3m, also 4mm, 6mm b. Rotation axis mirror 2 m = 2/m 3 m = 3/m, also 4/m, 6/m c. Most other rotations + m are impossible 2-fold axis at odd angle to mirror? Some cases at 45 o or 30 o are possible, as we shall see
88
3-D Symmetry 3-D symmetry element combinations d. Combinations of rotations 2 + 2 at 90 o 222 (third 2 required from combination) 4 + 2 at 90 o 422 ( “ “ “ ) 6 + 2 at 90 o 622 ( “ “ “ )
89
3-D Symmetry As in 2-D, the number of possible combinations is limited only by incompatibility and redundancy There are only 22 possible unique 3-D combinations, when combined with the 10 original 3-D elements yields the 32 3-D Point Groups
90
3-D Symmetry But it soon gets hard to visualize (or at least portray 3-D on paper) Fig. 5.18 of Klein (2002) Manual of Mineral Science, John Wiley and Sons
91
3-D Symmetry The 32 3-D Point Groups Every 3-D pattern must conform to one of them. This includes every crystal, and every point within a crystal Table 5.1 of Klein (2002) Manual of Mineral Science, John Wiley and Sons
92
3-D Symmetry The 32 3-D Point Groups Regrouped by Crystal System (more later when we consider translations) Table 5.3 of Klein (2002) Manual of Mineral Science, John Wiley and Sons
93
3-D Symmetry The 32 3-D Point Groups After Bloss, Crystallography and Crystal Chemistry. © MSA
95
+c+c +a+a +b+b Axial convention: “right-hand rule” 3-D Symmetry Crystal Axes
96
3-D Symmetry Crystal Axes
97
3-D Symmetry Crystal Axes
98
3-D Symmetry Crystal Axes
99
3-D Symmetry Crystal Axes
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.