Download presentation
1
Viruses and Cancer
2
Cancers of viral aetiology
Hepatocellular carcinoma (HBV and HCV) Burkitt’s lymphoma (EBV) nasopharyngeal carcinoma (EBV) Hodgkins disease (EBV) cervical carcinoma (HPV) Kaposi’s sarcoma (HHV-8) adult T cell leukaemia/lymphoma (HTLV-1)
3
Criteria epidemiology virus in tumour tissue
viral genes and oncogenesis
4
Mechanisms of Oncogenesis
modulation of cell cycle control (The virus may alter the regulatory mechanisms controlling the progress of the cell cycle and cell division) modulation of apoptosis (the virus must prevent the host cell from undergoing apoptosis, a normal cellular response to viral-induced injury, which would otherwise abort the further development of uncontrolled cell proliferation) ROS (Reactive oxygen species) mediated damage
5
Cell Cycle Control pRB ( a tumor suppressor protein that is dysfunctional in several major cancers. One function of pRb is to prevent excessive cell growth by inhibiting cell cycle progression until a cell is ready to divide) cyclin D1 (cell cycle control)
6
Modulation of Apoptosis
P53 (transcription factor activated by DNA damage that can induce growth arrest and apoptosis) Bcl-2 (supress apoptosis) FLICE inhibitory proteins (FLIPs) (inhibit apoptosis signalling)
7
ROS Damage inflammatory responses generate radicals, including OH. and NO. free radicals target DNA (mutation) protein (nitration, nitrosation) RNA lipids (lipid peroxidation)
8
ROS Damage Free radicals may promote cancer by
mutating cancer related genes activating signal transduction pathways promoting angiogenesis exerting selective pressure (p53 and NO.)
9
Hepatocellular Carcinoma
10
Hepatocellular Carcinoma
HCC is one of the most prevalent malignant diseases in the world chronic infection with HBV or HCV accounts for more than 80% of HCC cases other risk factors include aflatoxin B1, heavy alcohol consumption and smoking
11
HCC and HBV insertional activation HBx
transactivation of proinflammatory genes interaction with p53 generation of ROS
12
HCC and HCV HCV sequences are present in HCC tissue
HCV antigen expression in HCC (or other tissue) cannot be assessed HCV contains genes with potential oncogenic function
13
HCV genes HCV core protein has been shown to
cause HCC in transgenic mice modulate apoptosis drive cells to proliferation generate ROS
14
HCC and hepatitis viruses
mass vaccination against HBV will radically reduce the incidence of HCC in SE Asia elimination of HCV or HBV reduces the risk of developing HCC
15
Human Herpesvirus 8 and Kaposi’s Sarcoma
16
Kaposi’s Sarcoma Kaposi’s sarcoma (KS) is a mesenchymal tumour involving blood and lymphatic vessels KS occurs in three forms: classical endemic epidemic
17
Pathology of KS Multicentric lesions composed of interweaving bands of spindle cells that form irregular vascular channels Spindle cells express markers of endothelial cells (CD34 and Factor VIII)
18
KS and HIV The incidence of KS in HIV positive gay men is 20,000 fold that of the general population KS is 20 times more common in homosexual men with AIDS than other risk groups the risk of KS in HIV positive men increases with the frequency and risk of sexual activity
19
Herpesviruses and KS In 1994 RDA isolated viral sequences from KS tissue these sequences were identified as a new herpesvirus, designated HHV-8 HHV-8 has now been found in almost 100% of tissues from all forms of KS
20
Epidemiology HHV-8 seropositivity in various populations is correlated with the population risk of KS Longtitudinal surveys have shown infection with HHV-8 precedes the onset of KS
21
Virus and Tumour Tissue
In individuals with KS, HHV-8 sequences are found in tumour but not in adjacent tissue within KS lesions, HHV-8 DNA and antigen expression is localised to spindle cells
22
Genes and oncogenesis HHV-8 encodes homologues of human proteins
(examples): cyclin D1 G-protein coupled receptor bcl-2 FLICE inhibitory protein And others
23
v-cyclin D1 HHV-8 v-cyclin is expressed in KS lesions and interacts with CDK6 v-cyclin in complex with CDK6 is not inhibited by p16 INK4a or p27Kip1
24
HHV-8 (G protein-coupled receptor) GPCR
HHV-8 encodes a viral G protein-coupled receptor (vGPCR). v-GPCR is homologous to the IL-8 receptor v-GPCR has been shown to transform cells and tumour formation.
25
HHV-8 bcl-2 the viral protein has both sequence and structural homology to bcl-2 family proteins v-bcl-2 is functional the role of v-bcl-2 in the viral life cycle is not yet clear
26
v-FLIP v-FLIPs inhibit apoptosis signalling through death receptors
HHV-8 v-FLIP physically interacts with pro-caspase-8 and prevents recruitment to DISC
28
Non-homologous Viral Genes
Latency -associated nuclear antigen (LANA) is essential to the maintenance of HHV-8 LANA interacts with p53 and suppresses its transcriptional activity
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.